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Control charts

The fact that the criterion which we happen to use has a fine ancestry in highbrow statistical
theorems does not justify its use. Such justification must come from empirical evidence that it
works. (Shewhart, 1931, p. 18)

Overview

Control charts or process behaviour charts have been used for nearly 90 years to monitor
process performance. Although originally developed for use in manufacturing industry they
are now widely applied to processes involving the provision of services in fields such as finance
and healthcare.

This chapter deals with a wide variety of control charts and with their creation, interpretation
and maintenance via Minitab. Variables charts enable the monitoring of continuous random
variables (measurements), while attribute charts monitor discrete random variables (counts).
The consequences of tampering with processes are illustrated. Reference is made to auto-
correlated data and feedback adjustment. Time-weighted control charts will be introduced, as
will multivariate charts for the simultaneous monitoring of two or more variables.

The term ‘control charts’ suggests that these tools have a role only in the control phase of
Six Sigma projects. However, as Figure 1.4 indicates with reference to the transient ischaemic
attack and stroke clinic project, they may also be employed during the measure, analyse and
improve phases. Indeed, the team involved with the project resolved that the control charts
should continue to be maintained as a control measure once the project had formally ended.

5.1 Shewhart charts for measurement data

5.1.1 I and MR charts for individual measurements

‘The general idea of a control chart was sketched out in a memorandum that Walter Shewhart
of Bell Labs wrote on May 16, 1924’ (Ryan, 2000, p. 22) Reference has already been made in
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Table 5.1 Starch temperature data.

Observation 1 2 3 4 5 6 7 8 9 10
Time 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15
Temperature 27.2 27.6 268 272 271 266 27.6 277 275 26.6
Observation 11 12 13 14 15 16 17 18 19 20
Time 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45
Temperature 27.2 267 259 27.1 27.6 275 283 265 29.0 272

Chapter 2 to variation due to common causes and due to special causes. Caulcutt (2004, p. 37)
referred to Shewhart’s thinking as follows:

He suggested that a process is acted upon by countless factors, many of which have
little effect on the measured performance. Nonetheless, these minor factors, or
‘common causes’, are important because they are jointly responsible for the
random variation in performance. If, in addition a process is acted upon by a major
factor, or a ‘special cause’, the process will change and this change may be
revealed by a violation of the control chart rules.

Liquid starch is used in the packaging industry in the manufacture of corrugated paper. Starch
temperature is monitored at a manufacturing plant, which operates continuously, by recording
temperature (°C) at intervals of 15minutes. A set of 20 consecutive observations of
temperature on 2 August 2010 while the Blue shift team (one of three) was running the
process is given in Table 5.1, along with the time of observation.

One of the new features in Release 16 of Minitab is the Assistant menu. Selection of
Assistant > Control Charts. . . yields the flow chart displayed in Figure 5.1. The first question
to consider is: what is the data type? Temperature is a continuous random variable — one may
think of measuring temperature using a mercury thermometer and the endpoint of the column

Choose a Control Chart

Click to start
I-— Continuous——  Datatype  —— Attrioute —\
Data What
col\gclsd in ar
subgroups countin -
No o Yes Defective items 9" Detecs per unit
|
Subgroup
size
Subgroup size  Subgroup size
8 or less greater than 8
|-MR Chart Xbar-R Chart Xbar-S Chart P Chart U Chart
=3 Y [~ (I
‘ /\,’\f\/\ e AV P A : y
more... more... mare... mora... more...

Figure 5.1 Flow chart for chart selection.
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being located at any position on the continuous scale marked on the glass body of the instrument.
The next question to address is whether or not the data are collected in subgroups. The answer is
negative as a single temperature measurement is made every 15 minutes. This leads to the
choice I-MR Chart - individual values and the moving range of these values are plotted in what
is actually a pair of charts.

Clicking on more. . . underneath the I-MR Chart icon yields guidelines on collecting the
data and using the chart. Clicking on the icon itself yields a simplified menu for creation of the
chart with the assumption that the individual values to be charted have already been set up in a
column of a worksheet. The author has opted to introduce the reader immediately to the full
menus for the creation of individual value and moving range charts.

Columns called Date, Shift, Time and Temperature were set up in a Minitab worksheet. (In
order to enter the times at which the temperatures were recorded, i.e. 8:00 to 12:45 in
intervals of 15 minutes, one may use Calc > Make Patterned Data > Simple Set of Date/
Time Values. . . with Patterned Sequence specified as From first date/time: 08 : 00 To last
date/time: 12 : 45 In steps of: 15 with Step unit: Minute.) The temperature data must first be
entered into a column, along with any other relevant data in other columns. Use of Stat >
Control Charts > Variables Charts for Individuals > Individuals. . . yields the dialog box
in Figure 5.2.

Temperature is entered in Variables: to be charted. Under I Chart Options. . ., clicking
on the Estimate tab, clicking on the down arrow to select Use the following subgroups when
estimating parameters and inserting 1 : 20 in the window ensures that all 20 measurements
will be used in the calculation of the chart limits. Defaults were accepted otherwise. In
addition, Stamp was checked under Scale. . . and Time selected under Stamp columns: This
yields the basic individuals control chart for the starch temperature displayed in Figure 5.3.

Prior to discussion of the chart the reader is invited to enter Date, Shift, Time and
Temperature into four columns of a worksheet and to recreate the chart. Note that up to three
Stamp columns may be selected, so as more data come to hand one could select Shift and Date,
in addition to Time, in order to aid chart interpretation. On creating the chart the reader may
find that the X, LCL and UCL reference lines are labelled outwith the chart area. In order to
have the chart appear as in Figure 5.3 select Tools > Options. . ., double-click on Control
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Time | Temperature
£ 212 [ ogiiduals Chart % 1
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Figure 5.2 Creation of an individuals chart for temperature.



144 CONTROL CHARTS
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Figure 5.3 Individuals chart for temperature.

Charts and Quality Tools and then click on Other and check Display control limit/center
line labels for all stages. The author recommends use of this setting as, when stages are used as
in creating the chart in Figure 1.4, it is useful to have an indication of process performance
levels given on the chart for all the stages.

The ‘naked run chart’ has been ‘clothed’ through the addition of a centre line (CL)
corresponding to the mean, X = 27.245, of the 20 observations of temperature together with
the LCL and UCL reference lines. These are the upper and lower control limits (or upper and
lower chart limits), respectively. They are ‘three sigma limits’ placed at ‘three sigma’ below
and above the centre line respectively. Sigma in this context refers to an estimate of the process
standard deviation obtained from the data. Since all 20 points lie between the ‘tramlines’
formed by the LCL and UCL it is conventional to conclude that the process is exhibiting
only common cause variation. (Signals of evidence of special cause variation other than the
occurrence of a point beyond the chart limits will be considered later in the chapter.) The
process can be deemed to be in a state of statistical control and to be behaving in a stable and
predictable manner within the natural limits of variation determined by the upper and lower
chart limits. (None of the P-values on the Minitab run chart of the data is less than 0.05, which
supports the conclusion from the control chart that there is no evidence of anything other than
common cause variation affecting the process for maintenance of the starch temperature.)

The estimate of the process standard deviation used in the computation of the chart limits is
not the sample standard deviation of the 20 Temperature observations. The estimate is
obtained by calculating the 19 moving range (MR) values as indicated in Table 5.2. The reason
for use of this method of estimating standard deviation is that the process data used to compute
chart limits are often ‘contaminated’ by some special cause variation of which the creator of
the chart is unaware. The moving range method of estimation of process standard deviation is
influenced less by such contamination than the sample standard deviation method.

Each successive pair of temperatures is regarded as a sample of n = 2 values. The first pair
has range 27.6-27.2 = 0.4, the second pair has range 27.6-26.8 = 0.8 and so on. The mean of
the 19 moving ranges is 0.7895. Values of the factor, d,, which may be used to convert a mean
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Table 5.2 Calculation of moving ranges.

Observation 1 2 3 4 5 6 7 8 9 10
Temperature 27.2 276 268 272 271 266 276 277 275 266
MR * 04 0.8 0.4 0.1 0.5 1 0.1 0.2 0.9

Observation 11 12 13 14 15 16 17 18 19 20
Temperature  27.2 2677 259 27.1 276 275 283 265 290 272
MR 0.6 0.5 0.8 1.2 0.5 0.1 0.8 1.8 2.5 1.8

range for a set of samples from a normal distribution into a standard deviation estimate, can be
found in Appendix 2 or obtained via Help. Use Help > Methods and Formulas > Quality
and process improvement > Control charts > Variable Charts for Individuals > Meth-
ods for estimating standard deviation. Clicking on the table link at the end of the Average
moving range heading reveals that, for sample size n = 2, the value of d, is 1.128. (Reference to
Estimate under I Chart Options ..., in the dialog involved in the creation of Figure 5.2,
reveals that the default Method for estimating standard deviation with Subgroup size =1 is
to use Average moving range with Length of moving range: 2. The user may, if desired,
specify that the standard deviation be estimated using moving ranges of length greater than 2
and may specify use of median moving range rather than average moving range.) The
calculation of the chart limits is displayed in Box 5.1.

The values obtained in Box 5.1 agree with those displayed on the Minitab control chart in
Figure 5.3. Since 3/1.128 = 2.66 the calculations may be streamlined by use of the formulae:

LCL =
UCL =

—2.66 x MR,

X
X +2.66 x MR.

An estimate of process standard deviation (process sigma) is given by

Mean moving range MR  0.7895
=—=—-—-—=0.6999.
d> dy 1.128

The lower chart limit is

LCL = X — 3 x Estimated sigma
= 27.245 -3 x 0.6999 = 27.245 —2.0997 = 25.145,

and the upper chart limit is

UCL = X + 3 x Estimated sigma

27.245 43 x 0.6999 = 27.245 4 2.0997 = 29.345.

Box 5.1 Calculation of chart limits.
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These formulae would be required should the reader wish to create an individual chart
using pencil and paper or via a spreadsheet package. The formulae, together with those for
other control charts covered later in this chapter, are given in Appendix 3. The above formulae
apply only when the moving range used is of length 2.

Having found no evidence of any special cause variation on the control chart, it could be
adopted for process monitoring — with the limits calculated from the first 20 observations being
employed. (It is not desirable, in general, to update the chart limits as new data become
available.) Thus when the next observation of temperature becomes available all that is
required is for the value to be plotted on the chart. In order to do this via Minitab, right-click on
the active chart and from the menu click on Update Graph Automatically. On typing the next
temperature value of 26.2 into the Temperature column in the worksheet the control chart will
be automatically updated. Employment earlier of the option Use the following subgroups
when estimating parameters: 1 : 20 under Estimate ensures that the chart limits remain those
calculated from the initial 20 observations.

The reader will have observed that, under Estimate, one may select the default option
Omit the following subgroups when estimating parameters:. The author prefers generally
to specify the data to be used in the calculations rather than the data to be omitted. Had the chart
initial set of observations yielded a chart with, say, the 17th point outside the chart limits and
there was a known special cause associated with that observation, then revised chart limits
could be obtained with the 17th observation omitted from the calculations. This could be
achieved with Use the following subgroups when estimating parameters: 1:16 18:20
under Estimate.

The additional point lies within the chart limits so there is no signal of a possible special
cause. On plotting the next four values 26.5, 25.6, 26.3 and 24.1 the chart will be as shown in
Figure 5.4. The reader is invited to enter the data as described above and to create the chart
in Figure 5.4 for her/himself. The reader should note that if a centre line label or chart limit
label is obscured it may readily be moved to a better location by left-clicking, keeping the
mouse button depressed and dragging.

| Chart of Temperature

304
UCL=29.345
29 f
(1]
3 28] A \
> 5 ~d / V%
. /‘\ . A / \ X=27.245
% 27 \u/ ") , /' ¢ \\
3 / YA
E 26 J / \‘
25 LCL=25.145)
\
24 i-
8:00 8:30 9:00 9:30 10:0010:3011:0011:30 12:00 12:3013:00 13:30 14:00

Time

Figure 5.4 Individuals chart for temperature with additional data points.
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The 25th point on the chart lies below the lower chart limit, so this provides evidence that a
special cause may be affecting the process. Note that the plotting symbol for this ‘out of
control’ point is a (red) square annotated with a 1. The reason for this is that there are a number
of tests for special causes of which the first on the list provided by Minitab is the occurrence of a
point outside the chart limits, i.e. of a point lying at a greater distance than three standard
deviations from the centre line.

The maintenance engineer was subsequently called in and found a defective heating
element, which he replaced. Thus the special cause of variation in the process was removed.
One could then proceed to continue to monitor temperature using the chart with the limits
established using the first 20 observations. In the case of major changes to the process it might
be advisable to start the whole charting process again, i.e. to gather a series of initial
temperature readings and to plot an initial chart. If there are no points outside the limits
on this new chart then it can be adopted for further routine monitoring. If there are points
outside the limits then a search should be made for potential special causes.

The moving ranges may also be plotted in a second control chart. For the 25 temperatures the
chart of the 24 moving ranges is shown in Figure 5.5. It was created using Stat > Control
Charts > Variables Charts for Individuals > Moving Range. . ., clicking on MR Options. . .
and then on the Estimate tab, entering Variables: Temperature and specifying Use the following
subgroups when estimating parameters: 1 : 20. The upper limit was calculated from the initial
set of 19 moving ranges as follows:

UCL = 3.267 x MR = 3.267 x 0.7895 = 2.579.
No reference will be made in this book to underlying theory concerning the distribution of
ranges of samples from a normal distribution and to the derivation of the above upper limit

formula. The ‘centre’ line on the chart is plotted at the level of the mean moving range. The
lower chart limit is effectively 0 when ranges of pairs of measurements are used to estimate

Moving Range Chart of Temperature
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Figure 5.5 Moving range chart with limits based on first 20 temperatures.
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Figure 5.6 Individual and moving range charts for weight.

process standard deviation. All the points plotted lie within the chart limits. Note that, since
the moving range can never take a negative value, a point below the (effective) lower chart
limit is impossible.

The individuals chart or X chart can signal changes in the process location. Ideally the
moving range chart would only signal changes in the process variability. However, changes in
the process location, which are not accompanied by any change in process variability, can also
yield points above the upper limit on the moving range chart. Montgomery (2009, p. 264) urges
caution in the use of Shewhart control charts for individual measurements.

Note that Minitab offers the facility to create the charts separately or as a pair. The -MR
pair of charts — individuals and moving range — for the 25 bottle weights given in Table 2.1 is
shown in Figure 5.6. The chart limits were calculated using all 25 data values. The charts were
created using Stat > Control Charts > Variables Charts for Individuals >I-MR...,
selecting I-MR Options. . ., clicking on the Estimate tab and specifying Use the following
subgroups when estimating parameters: 1:25. The data are available in Weightl AAMTW.

No points fall outside the three-sigma control chart limits on either chart, so extended
charts with those limits could subsequently be used to monitor the process. The updated chart
with the addition of the data for the further Weights recorded in Table 2.2 is shown in
Figure 5.7. The extended data set is available in Weight]1 B.MTW and the reader should note
that, in creating the chart in Figure 5.7, it is necessary to specify Use the following subgroups
when estimating parameters: 1:25 under Estimate via I-MR Options. . ..

5.1.2 Tests for evidence of special cause variation on Shewhart charts

The run chart in Figure 2.14 provided evidence of special cause variation, yet no points fall
outside the limits on either control chart in Figure 5.7. In addition to a point outside chart limits
providing a signal of evidence of the presence of special cause variation, there are a number of
other tests used to provide evidence of the presence of special causes of variation. The tests
available in Minitab for the Shewhart charts provided are accessed via the Tests tab under
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Figure 5.7 Updated individual and moving range charts for weight.
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Figure 5.8 Tests for evidence of special causes.

149

. (<Chart Type> represents I Chart or MR or I-MR etc.,
depending on the particular chart or charts being used.) The tests available for the individuals
chart are displayed in Figure 5.8.

The default test checks for the occurrence of a point more than three standard deviations
from the centre line, i.e. for a point outside the chart limits. This test is referred to as Test 1 in
Minitab. Note that it is listed first in the dialog box displayed in Figure 5.8. The default versions
of all eight tests used in Minitab are listed in Box 5.2. The user can select which of the tests
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Test 1 1 point more than 3 standard deviations from center line

Test 2 9 points in a row on same side of center line

Test 3 6 points in a row, all increasing or all decreasing

Test 4 14 points in a row, alternating up and down

Test 5 2 out of 3 points > 2 standard deviations from center line (same side)
Test 6 4 out of 5 points > 1 standard deviation from center line (same side)
Test 7 15 points in a row within 1 standard deviation of center line (either side)
Test 8 8 points in a row > 1 standard deviation from center line (either side)

Box 5.2 Tests for evidence of special causes available in Minitab.

he/she wishes to apply or use the drop-down menu to select the application of either all tests or
no tests. All eight tests are available for the individuals chart, but only the first four are available
for the moving range chart. The reader is strongly recommended to refer to Appendix 4, where
an example of evidence of special cause variation being provided by each one of the eight tests
is displayed. (If desired, the reader may define the tests differently from the defaults listed
in Box 5.2. For example, many practioners use 8 rather than 9 points in a row in Test 2. The
change may be made locally by changing the value of K from 9 to 8 in the second box in the
column on the right of the dialog box in Figure 5.8, but it will revert to the default value of 9 in
any new Minitab project. If desired the change may be made global by using Tools >
Options. . ., double-clicking on Control Charts and Quality Tools, clicking on Tests and
changing 9 to 8 in the window for Test 2.)

Another option provided for control charts is the positioning of horizontal reference
lines/control limits at any number of standard deviations from the centre line the user desires.
For the weight data in Weight1B.MTW select Stat > Control Charts > Variables Charts for
Individuals > Individuals. . . and click on I Chart Options. . .. On the Estimate tab, select
Use the following subgroups when estimating parameters and enter 1 : 25 beneath it. On the
S Limits tab, select Display control limits at and enter These multiples of the standard
deviation: 1 2 3. Finally, click on the Tests tab and select Perform all tests for special causes.
This yields the chart in Figure 5.9.

The 29th point plotted is labelled with the digit 6, indicating that there is a signal of a
possible special cause affecting the process from Test 6 on the list in Box 5.2. Test 6 involves
checking for the occurrence of four out of five consecutive points that are more than one
standard deviation away from the centre line. The reader should verify from scrutiny of
Figure 5.9 that, of the ringed points 25-29, four are more than one standard deviation away
from the centre line, lying below the one-sigma lower limit of 486.73. The figure also shows the
message displayed on moving the mouse pointer to the label 6 associated with the 29th data
point. The Session window displays the report, shown in Panel 5.1, on the chart just created.

Thus when 29 observations have been plotted there is evidence that a special cause is
affecting the process. The warning means that one has to take care that the limits have been
calculated using the desired observations in the creation of any subsequent chart. (A run chart
of the first 29 observations created using Minitab provides no evidence of any special cause of
variation affecting the process. Thus, with the use of additional tests, the individuals control
chart provides evidence of special cause variation and it does so with fewer observations than
the run chart in this case.)
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Figure 5.9 Alternative individuals chart of weight data.

Test Results for | Chart of Weight (g)

TEST 6. 4 out of 5 points more than 1 standard deviation from center line (on
one side of CL).
Test Failed at points: 29, 36, 37, 39, 40

* WARNING * If graph is updated with new data, the results above may no
* longer be correct.

Panel 5.1 Session window report on chart in Figure 5.9.

In the next section charts for samples or subgroups of measurements are introduced,
together with the facility in Minitab to chart data from different stages in the history of a
process on the same diagram. This facility may be used with all of the Shewhart charts
considered in this chapter.

5.1.3 Xbar and R charts for samples (subgroups) of measurements

In many situations processes are monitored using samples or subgroups of product. The third
column in the Minitab worksheet Camshaft. MTW (available in the Minitab Sample Data folder
supplied with the software) gives the length (mm) of a series of 20 samples (or subgroups) of
size n = 5 camshafts taken from supplier 2. Reference to the flow chart from the Assistant menu
displayed in Figure 5.1 leads to the widely used procedure of computing the sample means
(Xbar) and the sample ranges (R) and plotting both series of values in sequence with appropriate
centre lines and control limits added. The tests available in Minitab for the Xbar chart of means
and the R chart of ranges match those for the individuals and moving range charts, respectively.

To create the charts using Minitab use Stat > Control Charts > Variables Charts for
Subgroups > Xbar-R. ... In this case, where all the measurements are in a single column, the
default All observations for a chart are in one column: option is used. Clicking on the
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Figure 5.10 Creation of mean and range charts for subgroups of size 5.

Estimate tab under Xbar-R Options. .. reveals that the default Method for estimating
standard deviation with Subgroup size > 1 is to use Pooled standard deviation. Note that
Use unbiasing constant is also checked by default.

One could opt to use Rbar, the mean of all the sample ranges, in order to estimate the
standard deviation of camshaft length. Historically this was a widely used method, but
statistical theory shows that the use of pooled standard deviation yields better estimates than
use of mean sample ranges. Readers with an interest in the technical details may find it helpful
to consult the paper by Mahmoud ez al. (2010). Throughout this chapter the Xbar-R charts
presented have all been created using the default option to estimate standard deviation using
pooled standard deviation and the unbiasing constant.

The completed dialog is displayed in Figure 5.10, the option to perform all tests for special
causes having been selected. Bold rectangles have been added to the image to indicate the first
four samples/subgroups of camshaft length. The charts in Figure 5.11 were obtained. There are
three signals on the Xbar chart indicating potential special cause variation affecting supplier
2’s process — there is evidence that the process is not in a state of statistical control, i.e. that it is
not behaving in a stable, predictable manner.

Let us suppose that discussion with those responsible for the process led to identification of
assignable causes of variation for subgroup 2 (machine fault) and subgroup 14 (operator error)
but not for subgroup 9. When signals of potential special cause variation lead to identification
of actual special causes it is normal to recalculate the chart limits with the corresponding
subgroups, 2 and 14 in this case, omitted from the calculations and to scrutinize the revised
charts. This may be achieved using Xbar-R Options. . ., clicking on the Estimate tab and
specifying 2 14 under Omit the following subgroups when estimating parameters, but the
author prefers to employ Estimate specifying 1 3:13 15:20 under Use the following
subgroups when estimating parameters. The Labels facility was used to add footnotes
indicating the actions taken. The resulting chart pair is shown in Figure 5.12. (If the special
causes identified have not been eliminated then one should be cautious about recalculating
limits. The Xbar chart with the existing limits has successfully detected these causes and so has
the potential to do so again should they recur. Otherwise there is a risk of ‘tightening’ the Xbar
chart limits to such an extent that the chart starts to yield too many false alarm signals of special
cause variation.)
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Xbar-R Chart of Supp2
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Figure 5.11 Mean and range charts for supplier 2.

The means for subgroups 2 and 14 fall outside the new control limits on the Xbar chart, but
these subgroups can now effectively be ignored. Subgroup 9 no longer gives a signal on the
Xbar chart, but subgroupl5 now does. However, this is a spurious signal since the point
corresponding to subgroup 14 has been counted as one of the four from five consecutive points
more than one standard deviation from the centre line (same side). There are no signals on the
R chart, so the decision might well now be taken to begin monitoring the process by taking
further subgroups of five camshafts at regular intervals and plotting the means and ranges on
charts using the limits displayed on the charts in Figure 5.12.

Xbar-R Chart of Supp2
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Assignable causes were found corresponding to subgroups 2 and 14
Limits on above charts were recalculated with those subgroups omitted

Figure 5.12 Xbar and R charts with revised limits.
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Xbar-R Chart of intial 25 samples
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Figure 5.13 Initial Xbar and R charts for rods process.

Some simulated data will now be used to demonstrate how different types of process
changes are indicated by signals on Xbar and R charts. Imagine a process which cuts extruded
plastic into rods and that, under ideal conditions, the rods have length (mm) which is normally
distributed with mean 60.00 and standard deviation 0.02, i.e. N(60.00, 0.022). Calc > Random
Data > Normal. . . was used to generate four columns of 25 values from the N(60.00, 0.02%)
distribution. The values were rounded to three decimal places and stored in the supplied
worksheet Rods. MTW. Each row of four values from thecolumns may be regarded as a sample/
subgroup of size n =4 from the normal distribution specified. Xbar and R charts of the initial
data are shown in Figure 5.13.

In creating these charts Observations are in one row of columns: x1-x4 was specified
and, from the Estimate tab under Xbar-R Options. . ., one may select Use the following
subgroups when estimating parameters: and specify 1 :25. With all available tests applied
there are no signals of potential special cause variation on the charts, so the decision could be
taken to use Xbar and R charts with the limits shown to monitor the process. (Suppose that
you forgot to select Perform all tests for special causes on the Tests tab. The Edit Last Dialog
icon [F may be used, or alternatively Ctrl + E, to access the most recently used dialog box and
to make any desired changes.)

Before proceeding to look at further simulated data for the process, details of the
calculation of the limits for the Xbar and R charts are presented in Boxes 5.3 and 5.4.
Readers may skip the details in these boxes as the charts may be employed effectively without
familiarity with technical details. If required, the formulae and constants involved are
available from the Help menu via Help > Methods and Formulas > Quality and process
improvement > Control charts > Variable Charts for Subgroups > Methods for esti-
mating standard deviation.

A further 15 subgroups of four length measurements were generated using the same
distribution as for the initial 25 subgroups that were charted in Figure 5.12. Then a further
20 subgroups were generated using different distributions to illustrate four different scenarios
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The means, X, of the 25 samples of n = 4 lengths have mean X = 59.999 49, the double bar
notation indicating that the value is the mean of a set of means. (Since the normal
distribution used to generate the simulated data had mean w = 60.00 it is not surprising
that the mean of the 25 means is close to 60.00 and thus provides a good estimate of the
process mean .)

The pooled standard deviation is the square toot of the mean of the 25 sample variances
in this case, where the samples all have the same size, and is 0.017 837 1. This has to be
divided by the unbiasing constant ¢4(76) =0.996 672, available in the linked table in
Methods and Formulas, to yield the estimate 0.017 8967, of the process standard
deviation (process sigma). (This estimate is close to the standard deviation o = 0.02 of the
distribution used to generate the simulated data.)

The theory of the distribution of the sample mean from Section 3.4 yields three-sigma
Xbar chart limits of

g
The chart limits are
_ Estimated si 0.017 8967
% 43 x MACC SIEMA _ 59 99949 43— 02/
N V4

=59.999 49 £ 0.026 845 0 = (59.972 64, 60.026 34).

These limits are in agreement with those on the Xbar chart in Figure 5.13.

Box 5.3 Calculation of Xbar chart limits.

The three-sigma R chart limits are
g £ 30k = dro £ 3ds0,

where the constants d, and ¢35 may be read from the linked table in Methods and
Formulas. The centre line is placed at the estimated ug given by chart limits are

dp x Estimated sigma = 2.059 x 0.017 896 7 = 0.036 85).
The chart limits are

dr x Estimated sigma + 3d; x Estimated sigma
=2.059 x 0.0178967 + 3 x 0.8794 x 0.017 896 7
= (—0.01036,0.084 06).
Since range cannot be negative, the lower chart limit is effectively 0. These limits and the

centre line are in agreement with those on the R chart in Figure 5.13. Sample size has to be
at least 7 for nonzero lower limits to occur on an R chart.

Box 5.4 Calculation of R chart limits.
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in terms of process changes. Thus one can think of the process change, i.e. that a special cause
of variation took effect, occurring at some time between the taking of the 40th and 41st
samples. The data sets are supplied as RodsScenariol. MTW, RodsScenario2. MTW, RodsS-
cenario3.MTW and RodsScenario4. MTW. In all four cases:

e limits on the charts (see Figures 5.14-5.16) are those calculated from data for the first
25 samples;

« all tests for evidence of special cause variation were performed.

Inscenario 1 (process mean increased, process standard deviation unchanged), subgroup 42 gives
rise to the first signal of the process change on the Xbar chart in Figure 5.14. In practice, on
plotting the data for this sample, action would be taken to seek a special cause of variation
affecting the process. Thus it took just two subgroups to signal the process change. However, if the
samples were taken at 15-minute intervals this could correspond to up to half an hour of
production of less satisfactory rods from the point of view of the customer. The number of
samples required to signal a process change is referred to as the run length. (It must be emphasized
that chart limits, or control limits as they are referred to by some, are not specification limits.)

In scenario 2 (process mean decreased, process standard deviation unchanged), it may be
seen from Figure 5.15 that the first signal of the process change was from the 44th sample. Thus
it took four subgroups to flag the change in this scenario. With a smaller change in the process
mean in this scenario than in the first, it is not surprising that the run length is greater. (Note
that, as in scenario 1, there is a spurious signal on the R chart. Recall that, in simulating the data
for both scenarios 1 and 2, no change was made to the process standard deviation, i.e. to process
variability.)

In scenario 3 (process standard deviation increased, process mean unchanged) it took just
one sample for the R chart to signal the likely occurrence of a special cause affecting process
variability. With increased variability the limits on the Xbar chart in Figure 5.16 are too close
together from sample 41 onwards. Thus an increase in process variability typically yields
signals on the Xbar chart as well as on the R chart. Thus it is advisable to examine the R chart
first when employing Xbar and R charts for process monitoring purposes and to interpret the
charts as a pair.

A major increase in variability, such as the one illustrated in this scenario, could have a
major impact on process capability. Thus the process owners would most likely wish to take
action quickly after the data for subgroup 41 were plotted to eliminate any special cause found
to be affecting the process. The changes in location in the first two scenarios could also impact
on process capability in a detrimental manner. The final scenario illustrated refers to a situation
where process variability is reduced. Reduction of variability is fundamental to achieving
quality improvement.

In scenario 4 (process standard deviation decreased, process mean unchanged) Figure 5.17
indicates that it took 13 subgroups for a signal to appear on the R chart. Note that the reduction in
process variability does not give rise to signals on the Xbar chart. The reason for this is that from
sample 40 onwards the Xbar chart limits are too far apart. Were we dealing with real as opposed
to simulated data then perhaps a deliberate change was made to the process after subgroup 40
was taken, possibly as the result of a Six Sigma project undertaken to identify ways to reduce
process variability. In any case it would clearly be desirable to maintain the reduced variability.

For the purposes of illustration let us suppose that, between the times at which samples
40 and 41 were taken, a new feed control system was fitted to the machine which cut the



SHEWHART CHARTS FOR MEASUREMENT DATA 157

Scenario 1 - Mean increased to 60.02
Standard deviation remained unchaged
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Figure 5.14 Xbar and R charts for an increase in process mean (scenario 1).

Scenario 2 - Mean decreased to 59.99
Standard deviation remained unchaged
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Figure 5.15 Xbar and R charts for a decrease in process mean (scenario 2).

extruded plastic into rods. In addition to the four columns containing the subgroups of four
length measurements across their rows, a fifth column consisting of 40 values of 1 followed by
20 values of 2, indicating the two phases of operation monitored, has been added to the
worksheet. Some of the dialog involved may be viewed in Figure 5.18. Points to note are:

¢ Observations are in one row of columns: x1-x4 has been specified

¢ Under Options. . . and Estimate one has to select Use the following subgroups when
estimating parameters: and specify both 1:25 and 41 : 60.
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Scenario 3 - Process standard deviation increased to 0.04
Mean remained unchaged
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Figure 5.16 Xbar and R charts for an increase in process standard deviation (scenario 3).

Scenario 4 - Process standard deviation reduced to 0.01
Mean remained unchaged
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Figure 5.17 Xbar and R charts for a decrease in process standard deviation (scenario 4).

e Under Options. .. and Stages one has to specify selection of Phase in order to
Define stages (historical groups) with this variable:. The default option to use both
When to start a new stage and With each new value may be used. (Alternatively,
When to start a new stage and With the first occurrence of these values: 1 2 could
be employed.)
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Figure 5.18 Defining stages in the creation of Xbar and R charts.

The charts are displayed in Figure 5.19. In order to have the limits and centre lines labelled for
all stages use <Chart> Options > Display > Other and check Display control limits/center

line labels for all stages.

The 20 subgroups plotted for the second stage may be regarded as initial data for a new
Xbar-R chart pair. There is a signal from the fourth of the second-phase subgroups on the
R chart, so many experts would recommend reviewing the situation after another few
subgroups have been obtained before adopting the new charts for further routine monitoring.
Montgomery (2009, p. 297) states that when used in this manner ‘the control chart becomes a

Xbar and R charts before and after new feed mechanism fitted
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Figure 5.19 Xbar and R charts with two stages.



160 CONTROL CHARTS

logbook in which the timing of process interventions and their subsequent effect on process
performance is easily seen’.

As an alternative to mean and range (Xbar and R) charts, mean and standard deviation
(Xbar and S) charts may be used when data for process monitoring are collected in subgroups.
The flow chart in Figure 5.1 recommends the use of Xbar and S charts whenever sample size is
8 or more. An example of the use of an Xbar and S chart pair is provided as an exercise. Other
topics on Shewhart control charts for measurement data, such as the use of individuals charts to
check that a process is operating ‘on target’ and triple charts (I-MR-R/S charts) are referred to
in follow-up exercises. No reference will be made to zone charts in this book.

Tests 1, 2 (with 8 points in a row), 5 and 6 are referred to as the Western Electric Company
(WECO) rules, and some practitioners prefer to use these four tests rather than all eight
available in Minitab. Ultimately the decision on which tests to use lies with the process team.
The following comments are made in NIST/SEMATECH (2005, Section 6.3.2):

While the WECO rules increase a Shewhart chart’s sensitivity to trends or drifts in
the mean, there is a severe downside to adding the WECO rules to an ordinary
Shewhart control chart that the user should understand. When following the
standard Shewhart ‘out of control’ rule (i.e., signal if and only if you see a point
beyond the plus or minus 3 sigma control limits) you will have ‘false alarms’ every
371 points on the average . . .. Adding the WECO rules increases the frequency of
false alarms to about once in every 91.75 points, on the average . . .. The user has
to decide whether this price is worth paying (some users add the WECO rules, but
take them ‘less seriously’ in terms of the effort put into troubleshooting activities
when out of control signals occur).

Readers wishing to construct control charts for measurement data without using Minitab may
find the factors in Appendix 2 and the formulae in Appendix 3 of value.

5.2 Shewhart charts for attribute data

5.2.1 P chart for proportion nonconforming

Consider a large e-commerce company at which there is concern over complaints from
customers concerning inaccurate invoices being e-mailed to them. During the measure phase
of a Six Sigma project aimed at improving the situation, random samples of 200 invoices were
checked for inaccuracies, each week, for 20 weeks. The data, together with the calculated
proportions, are shown in Table 5.3 and are available in the worksheet Inaccuratel MTW.

Table 5.3 Invoice data.

Week no. 1 2 3 4 5 6 7 8 9 10
No. inaccurate 23 23 20 21 17 22 24 20 18 17
Proportion 0.115 0.115 0.100 0.105 0.085 0.110 0.120 0.100 0.090 0.085

Week no. 11 12 13 14 15 16 17 18 19 20
No. inaccurate 24 17 15 19 19 22 27 23 23 18
Proportion 0.120 0.085 0.075 0.095 0.095 0.110 0.135 0.115 0.115 0.090
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The upper chart limit is given by

P
UCL = j+3 /’%

0.103 x 0.897

=0.1 il
0.103+3 500

= 0.10340.0645 = 0.1675.

The lower chart limit is

=
LCL = p—3 /M

0.103 x 0.897

=0103-3 | ——
0.103 -3 200

=0.103 — 0.0645 = 0.0385.

Box 5.5 Calculation of P chart limits.

In this scenario counts are being made of the number of items (invoices) that are defective
(contain one or more inaccuracies), so according to the flow chart in Figure 5.1 the appropriate
control chart in this situation is a P chart or chart for proportion defective. Some refer to items
as being nonconforming rather than defective. The mean of the 20 proportions is p = 0.103
and the chart centre line is plotted at this value. This is taken as an estimate of the population
proportion, p, and the calculation of the three-sigma limits for the chart are made using the
formulae, given in Appendix 3, incorporating the standard deviation of a proportion stated in
Chapter 4. The calculations are displayed in Box 5.5.

To create the chart with Minitab, the number of inaccurate invoices is entered into a column
labelled No. Inaccurate and use made of Stat > Control Charts > Attributes Charts > P..

.. No. Inaccurate is entered under Variables: as the variable to be charted and the sample/
subgroup size is specified using Subgroup sizes: 200. The default versions of all four available
tests were implemented under P Chart Options. .. > Tests. This may be achieved by
checking each of the four tests or by selecting Perform all tests for special causes from
the menu under Tests. The four available tests are the same as the first four of the eight
available with both charts for individuals (X) and for means (Xbar). Examples of patterns
yielding signals of possible special cause variation from the tests are given in Appendix 4. The
chart is displayed in Figure 5.20. The reader should note that Minitab did not require a column
of proportions in order to create the chart.

There are no signals of any potential special causes affecting the process so it can be
deemed to be in a state of statistical control, operating in a stable and predictable manner with
approximately 10% of invoices having inaccuracies. It can therefore be agreed to use the chart
with the centre line and limits shown for future process monitoring.

Before proceeding to look at further data from the process the reader is invited to re-create
the P chart using Assistant > Control Charts and clicking on more... under P chart.
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P Chart of No. Inaccurate
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Figure 5.20 P chart of invoice data.

Click on Attribute data and read the two descriptions, then under Attribute data click on
Next. Having read the two descriptions, under Defective items click on Next to obtain the
screen shown in Figure 5.21. Clicking on the + icons yields further details. Finally the reader
isinvited to click on the create chart icon and reproduce the chart in Figure 5.20. (Hint: You will
need to select Estimate from the data under Control limits and center line.) This leads to the
creation of three items in the Graphs folder — a Stability Report that includes the P chart, a
Summary Report and a Report Card. The clean bill of health from the Report Card supports the
decision to ‘roll out’ the chart in Figure 5.20 for further monitoring.

Defective tems

~ The P chart monitors the proportion (or percentage) of defective items
Click to PODHBUL (K PeIcsIACE)

create chart Guidelines

;“\ — Collecting the data
Ay \ —
o AV | e Collect data in subgroups (samples, lots). +

—_—
s Collect subgroups at appropriate time intervals. +

« Collect enough subgroups. +
o Subgroups must be large enough. +
« Subgroup sizes can be unequal. +

o Countthe number of defective items in each subgroup. +

Using the chart
¢ Minitab automatically tests for special causes. +

« Estimate new control limits only when the process changes. +

Figure 5.21 P chart guidelines from the Assistant menu.
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Table 5.4 Further invoice data.

Week No. 21 22 23 24 25 26 27 28 29 30
No. Inaccurate 10 16 17 15 18 22 13 10 11 11
Proportion 0.05 0.08 0.085 0.075 0.09 0.11 0.065 0.05 0.055 0.055
Week No. 31 32 33 34 35 36 37 38 39 40

No. Inaccurate 8 10 16 17 15 18 22 13 10 11
Proportion 0.04 005 0.08 0.085 0.075 0.09 0.11 0.065 0.05 0.055

At the end of the 20-week period during which the above data were gathered, changes
planned by the project team were introduced. Data for the next 20 weeks are given in Table 5.4
and the data for all 40 weeks are available in the worksheet Inaccurate2. MTW.

The extended control chart for proportions was created using Stat > Control Charts >
Attributes Charts > P. .. and is shown in Figure 5.22. Note that the limits are those based on
the data for the first 20 weeks so this was indicated using Estimate under P Chart Options. . ..
(The P chart dialog available via the Assistant menu does not permit specification of the
samples to be used in the calculation of the limits.) The samples to be used in the calculation of
the limits may be specified in two ways: either Estimate > Omit the following subgroups. . .
and enter 21 : 40 or Estimate > Use the following subgroups. . . and enter 1 : 20. The author
prefers always to use the latter method.

The first signal appears from the sample taken during week 35. Reference to the list of tests
in Appendix 4 indicates that a signal arising from Test 2 results from the occurrence of nine
consecutive points on the same side of the centre line. These points have been ringed in the plot,
and on moving the mouse pointer to the label 2 beside the ninth point the sample number and
the test failed are displayed. Thus the chart provides evidence that the process changes have led
to improvement, in the form of a reduction in the proportion of inaccurate invoices. Thus it is
appropriate to introduce an additional column named Phase in the worksheet to indicate the
two phases of operation of the process, before and after changes.

P Chart of No. Inaccurate
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Figure 5.22 Extended P chart of invoice data.
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P Chart of No. Inaccurate by Phase
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Figure 5.23 P charts for the two phases.

The first 20 cells in the column named Phase could contain the text Pre and the remaining
20 the text Post. This may be achieved using Calc > Make Patterned Data > Text Values. . .
with Store patterned data in: Phase, Text values: Pre Post, Number of times to list each
value: 20, and Number of times to list the sequence: 1. In order to create the revised chart
displayed in Figure 5.23 all the data values were used in the computation of limits. Again this
may be specified in two ways: either Estimate > Omit the following subgroups. . . and leave
the window blank, or Estimate > Use the following subgroups... and enter 1:40. In
addition, under P Chart Options. . . > Stages one has to enter Phase under Define stages
(historical groups) with this variable:.

Figure 5.23 indicates that the changes have reduced the proportion of inaccurate invoices to
around 7%. It also indicates that the process is behaving in a stable, predictable manner
following the changes and that the second chart could be adopted for further monitoring.

Clearly there is room for further improvement. Let us suppose that at a later date the
proportion has dropped to around 2%, with mean proportion for a series of 25 samples being
0.018. The calculation of the Lower Chart Limit is shown in Box 5.6.

A negative proportion is impossible so there is, strictly speaking, no lower control limit on
the P chart with subgroup size 200. However, Minitab inserts a horizontal line at zero on the

=0.018-3 % =0.018 —0.028 = —0.010

Box 5.6 Calculation yielding a negative lower chart limit.
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Box 5.7 Criterion to ensure a nonzero lower limit on a P chart.

P chart in such cases, labelled LCL = 0. With no lower limit, the possibility of evidence of a
further drop in the proportion of nonconforming invoices being signalled by a point falling
below the lower limit is not available. To reinstate this option the sample size can be
increased. Some mathematical manipulation shows that, to ensure a lower limit exists on a P
chart with three-sigma limits, the inequality in Box 5.7 must be satisfied. For p = 0.018, the
formula gives n >491. Thus, once the monthly proportion of nonconforming invoices had
dropped to around 2%, monthly samples of, say, 500 invoices would provide the opportunity
to detect further improvement through a signal from a point on the chart falling below the
lower limit.

In some situations it is not possible to have constant sample size but it is still possible to
create a P chart. The chart limits are no longer horizontal parallel lines but have a stepped
appearance, the limits being closer together for larger samples and wider apart for smaller
samples. As an example, consider the data in Table 5.5 giving monthly admissions of stroke
patients to a major hospital together with the numbers of those patients treated in the acute
stroke unit.

The data were set up in three columns in the supplied Minitab worksheet ASU.MTW. The
first contains the month in which the data were collected in the date format Jan-02, Feb-02 etc.
and was set up using Calc > Make Patterned Data > Simple Set of Date/Time Values. . .
with Patterned Sequence specified as From first date/time: Jan-02 To last date/time:
Dec-03 In steps of: 1 with Step unit: Month and defaults otherwise. The second column
contained the monthly counts of patients admitted with a diagnosis of stroke, and the third the
number of those patients who receive treatment in the acute stroke unit.

Part of the dialog involved in creating a P chart for the proportion of patients receiving
treatment in the acute stroke unit is shown in Figure 5.24. Subgroup size: is specified by
selecting the column named Strokes. Use of the Scale. . . facility enables the horizontal axis of
the chart to be ‘stamped’ with the months when the data were collected. Limits were based on
the first 15 observations as changes were made to the process of managing stroke patients at the
hospital at the end of March 2003, corresponding to observation 15. The chart is displayed in
Figure 5.25. The centre line is placed at 0.6352 and labelled P = 0.6352. However, this value is
not the mean of the first 15 proportions; it is the total number of stroke patients receiving ASU
care for the first 15 months (477) divided by the total number of stroke patients admitted in the

Table 5.5 Monthly stroke admissions.

2002 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Strokes 47 58 35 49 58 56 50 45 51 53 61 47
ASU 31 34 29 28 30 35 31 37 26 33 37 32

2003 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Strokes 51 38 52 43 43 4 49 42 38 58 39 36
ASU 32 32 30 34 31 28 32 37 32 41 26 31
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Figure 5.24 Creation of a P chart with variable sample size.

first 15 months (751). In the case of constant sample size the result of this calculation is the
same as the result of taking the mean of the corresponding proportions. The UCL and LCL
values displayed apply to the final sample that had size 36. The reader is invited to use the
formulae in Box 5.5 to confirm the LCL of 0.3945 and UCL of 0.8758 displayed.

From the signals on the chart it would appear that the process changes have led to a greater
proportion of stroke patients receiving acute stroke unit care. (Of course the theory underlying
the P chart is based on the binomial distribution for which the probability of care in the acute
stroke unit would remain constant from patient to patient. In reality this is unlikely to be the
case. Wheeler and Poling (1998, pp. 182-184) and Henderson et al. (2008) refer to this issue.
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Figure 5.25 P chart with variable subgroup size.
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However, the chart does display the data in an informative way and methods presented in
Chapter 7 can be used to test formally whether or not the proportion of patients receiving acute
stroke unit care has increased.)

The assumptions underlying valid use of a P chart are as follows:

1. Samples of n (not necessarily a constant) items provide the areas of opportunity.

2. Each item may be classified to either possess, or not possess, an attribute. Usually the
attribute is nonconformance with specifications.

3. The probability, p, that an item possesses the attribute of interest is constant.

4. The status of any item with regard to possession of the attribute is independent of that of
any other item.

5.2.2 NP chart for number nonconforming

The number defective or NP chart is exactly equivalent to the P chart, the only difference being
that the number defective is plotted instead of the proportion defective. The NP charts for the
number of inaccurate invoices data in Tables 5.3 and 5.4 in the previous section are displayed in
Figure 5.26. Note that this is simply a scaled version of the chart in Figure 5.23 —e.g. the upper
chart limit in the post-change phase in Figure 5.26 is 200 times the upper chart limit in the post-
change phase on the P chart in Figure 5.23.

The author believes that, since the NP chart plots the number of defective items rather than
the proportion of defective items, it is less directly informative than the P chart. One advantage
of the NP chart over a P chart is that it is much simpler to update a pencil and paper version of an
NP chart as no calculation is required — the count of defective items in the sample is plotted
directly on to the chart. The underlying assumptions for valid use of an NP chart are the same as
for the P chart.

NP Chart of No. Inaccurate by Phase
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Figure 5.26 NP charts for the two phases.
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Table 5.6 Counts of nonconformities in ATMs.

ATM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of nonconformities 5 4 7 9 4 6 5 8 9 11 5 10 6 6 5
ATM 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

No. of nonconformities 4 7 10 6 9 &8 8 4 8 8 4 4 7 3 12

5.2.3 C chart for count of nonconformities

The C chart is used to plot the count of defects/nonconformities in equal ‘areas of opportunity’
for these to occur. These ‘areas of opportunity’ may be in time, space or segments of
product. The number of yarn breakages per hour on a monofilament spinning frame,
the number of nonconformities (imperfect solder joints, missing or damaged components
etc.) on a printed circuit board taken at regular intervals from a process are respectively time
and space examples.

Table 5.6 gives counts of the number of nonconformities detected during verification of
automatic telling machines of a particular type. The data are in time sequence and are available
in ATM.MTW. A C chart of the data is shown in Figure 5.27 created using Stat > Control
Charts > Attributes Charts > C. . . with the counts from the above table previously entered
into a column named No. Nonconformities. The chart limits calculations are shown in Box 5.8.
Tests 1 to 4 inclusive (see Appendix 4) are available for the C chart in Minitab. These were all
applied in the creation of the chart in Figure 5.27. There is no evidence from the chart of any
special cause affecting the process. Thus the chart could be employed for further monitoring of
the process.
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Figure 5.27 C chart of ATM nonconformity counts.
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The upper chart limit is given by

UCL = p+3\p
— 6.733+3 x 2.595 = 14.52.

The lower chart limit is

LCL = ¢—3v¢
= 6.733 -3 x2.595 = —1.51.

As a count of nonconformities can never be negative, Minitab sets the LCL to 0.

Box 5.8 Calculation of limits for a C chart.

The assumptions underlying valid use of a C chart are as follows:

1. The counts are of nonconformities or events.

2. The nonconformities or events occur in a defined region of space or period of time or

segment of product referred to as the area of opportunity.

3. The nonconformities or events occur independently of each other, and the probability of
occurrence of anonconformity orevent is proportional to the size of the area of opportunity.

5.2.4 U chart for nonconformities per unit

The U chart may be employed when counts of nonconformities are made over a number of
units of product. The worksheet Faults. MTW contains the number of faults detected in each of
30 consecutive hourly samples of 40 retractable single-use syringes from a pilot manufactur-
ing process. A U chart of the data is shown in Figure 5.28 created using Stat > Control

U Chart of Faults
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Figure 5.28 U chart of faults per syringe.
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Charts > Attributes Charts > U. . .. Tests 1 to 4 inclusive (see Appendix 4) are available for
the U chart in Minitab. These were all applied in the creation of the chart in Figure 5.28. There
is evidence from the chart of a special cause affecting the process since the last point is above
the upper chart limit. The sample size for a U chart can be variable and Minitab enables
U charts with variable sample size to be created in the same way as in the case of the P chart. A
column that indicates the sample sizes has to be specified in the Subgroup sizes: window in the
dialog, as was done in the dialog displayed in Figure 5.24 for the chart in Figure 5.25.

Reference to the Assistant flow chart for Shewhart control chart selection that is displayed
in Figure 5.1 reveals no reference to the C chart. However, a C chart is the special case of the
U chart with constant size 1 for all subgroups. The reader is invited to re-create the C chart in
Figure 5.27 using the U chart facility.

Readers wishing to construct control charts for attribute data without using Minitab may
find the formulae in Appendix 3 of value. This completes the material on Shewhart control
charts in this book. Montgomery (2009, pp. 330-344) provides guidelines for the imple-
mentation of these charts. After a brief discussion of funnel plots, we turn our attention to
time-weighted control charts.

5.2.5 Funnel plots

Although not strictly control charts, funnel plots will be included here because the underlying
statistical modelling is identical to that for the P chart. In order to introduce the funnel plot,
consider the situation where a customer has records of counts of nonconforming units for a
number of suppliers as shown in Table 5.7. (Having the data in time sequence is crucial for the
correct use of control charts, but is not so for funnel plots; indeed the data for a funnel plot
typically applies to the same time period.)

The funnel plot, with three sigma limits, is shown in Figure 5.29. The plot gets its name
from the funnel-like shape of the curves defining the limits. The proportions for each supplier
are plotted against the number of units tested. The centre line corresponds to the mean
proportion nonconforming across all ten suppliers of p = 228,/2000 = 0.114, approximately
11%. The three-sigma limits for a supplier are calculated using the formula
P £ 3+/p(1 — p)/n, where n is the number of units tested for that supplier. Should limit values
greater than 1 or negative values be obtained then they should be set to 1 or 0, respectively.

Table 5.7 Records of nonconforming units for ten suppliers.

Supplier Units tested No. nonconforming
A 200 19
B 150 41
C 60 8
D 400 48
E 80 11
F 250 13
G 160 19
H 200 18
I 360 38
J 140 13
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Figure 5.29 Funnel plot of proportions of nonconforming units.

Suppliers B and F plot outside the limits. As supplier B falls above the upper limit the chart
provides evidence that supplier B produces nonconforming units at a significantly higher rate
(27.3%) than the overall rate of 11.4%. Similarly, there is evidence that supplier F performs
significantly better (3.6%) than the overall rate of 11.4%.

Spiegelhalter (2002) discusses the use of funnel plots for institutional comparisons in
healthcare and also calculation of the limits using the binomial probability distribution rather
than the normal approximation method used above. League tables are often produced when
comparing performance across institutions, but some argue that identifying the institutions
that stand out from the crowd via a funnel plot analysis and then investigating the performance
of these can lead to insights that lead to quality improvement. Minitab does not have a facility
for the direct creation of funnel plots. A follow-up exercise is provided and details of how
a funnel plot may be created using Minitab are provided in the notes on the exercise on the
book’s website.

5.3 Time-weighted control charts

5.3.1 Moving averages and their applications

Time-weighted control charts plot information derived not only from the most recent sample
obtained but also from the most recent and earlier samples. Two types of time-weighted control
charts will be discussed: the exponentially weighted moving average (EWMA) chart and the
cumulative sum (CUSUM) chart.

Before considering the EWMA chart, moving averages will be introduced.

Consider daily sales of pizzas at Halcro Snacks, which operates a fast-food kiosk, on
Mondays to Fridays inclusive each week, in a business park. The data (Table 5.8) are available
in Pizzas.xls.

Having set up the data in two columns of a worksheet, Graph > Time Series Plot. . . >
Simple may be used to display the data. The Time/Scale. .. button may be used to Stamp
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Table 5.8 Daily sales data.

Day Sales Day Sales
5-Jul-10 54 19-Jul-10 63
6-Jul-10 93 20-Jul-10 110
7-Jul-10 55 21-Jul-10 70
8-Jul-10 59 22-Jul-10 83
9-Jul-10 143 23-Jul-10 177
12-Jul-10 86 26-Jul-10 65
13-Jul-10 95 27-Jul-10 112
14-Jul-10 58 28-Jul-10 66
15-Jul-10 75 29-Jul-10 56
16-Jul-10 146 30-Jul-10 163

the horizontal time axis with Day, selected in the Stamp columns: window, as shown in
Figure 5.30.

A cyclical pattern is evident in the level of daily sales, with Friday having the highest level
each week. A moving average of length 5 is a natural way to summarize the data in view of the
five-day operation. (In this context ‘average’ implies the mean.) Each consecutive set of
five daily sales data includes data for a Monday, Tuesday, Wednesday, Thursday and Friday. By
the end of the first five days of trading, total daily sales were

54493 455459 + 143 = 404,
so the first moving average of length 5 is

54/5+93/5+55/5+59/5+ 143/5 = 404/5 = 80.8.

Time Series Plot of Sales
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Figure 5.30 Time series plot of sales data.
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Figure 5.31 Schematic for calculation of moving averages.

An equivalent way to obtain this is to multiply each one of five consecutive daily sales
counts by 0.2 and sum the five products. The set of five factors 0.2, 0.2, 0.2, 0.2 and 0.2 are
known as weights. The set of weights for calculation of a moving average must sumto 1. (With
quarterly data, for example, one could employ a moving average of length 4 with weights 0.25,
0.25, 0.25 and 0.25.) The first two and the final moving average calculations are displayed in
schematic form in Figure 5.31.

The first moving average becomes available on day 5 and the final one on day 20. They can
be readily calculated and plotted in Minitab. Use Stat > Time Series > Moving Average. . .,
select Sales as the Variable: and specify the MA length: as 5. Under Graphs. . . check Plot
smoothed vs. actual. Under Storage. . . check Moving averages, accept defaults otherwise
and click OK, OK. The plot in Figure 5.32 is obtained.

In Figure 5.31 the first moving average value of 80.8 appears below 5 in the row giving the
day number. This moving average is plotted (default in Minitab) against the 5th day. The
moving average provides a smoothing technique for data in the form of time series. Scrutiny of
the moving average plot enables any underlying trend or other major pattern in the series to be
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Figure 5.32 Time series plot of sales with moving average of length 5.
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Weight vs Lag for MA of length 5
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Figure 5.33 Weights for moving average of length 5.

identified. In this case the plot of the moving average plot indicate that sales appear to follow an
initial upward trend, with a suggestion of a downward trend latterly. The accuracy measures in
the panel to the right of the plot will be explained later in the section.

As far as the calculation of the moving average values is concerned, the reader is invited to
visualize the shaded template in Figure 5.31 being moved from one group of five sales figures
to the next. With each group, the sales figures are multiplied by the adjacent weights and the
products summed to give the moving average value. The current observation may be
considered to have lag 0, the immediately prior observation lag 1 and so on. A plot of the
weights versus lag for the moving average of length 5 is given in Figure 5.33. The scale has
been reversed as a lag value of 1 means one step back in time, i.e. in the negative direction on a
conventional horizontal axis.

Consider now the situation where, in calculating a moving average, the most recently
observed value is assigned weight «, the observation prior to that weight a(l — a), the
observation prior to that weight a(1 — a)? and so on, where the number « is selected such that
0 <a <1. The sum of an infinite sequence of weights of this type is 1. In the case where
a = 0.4, for example, the sequence of weights would be 0.400, 0.240, 0.144, 0.086, . . .. A plot
of weight versus lag is shown in Figure 5.34. Minitab refers to « as the weight, but the term
smoothing constant is also widely used.

The weights form a geometric series and decrease exponentially. The more recent the
observation then the greater the influence, or weight, it has in the calculation of the moving
average. A moving average of this type is referred to as an exponentially weighted moving
average (EWMA). The direct calculation of some EWMAss is displayed in Figure 5.35.

Each weight, as we move further back in time, is 0.6 times the previous one in this case.
This factor of 0.6 is known as the discount factor @ =1— «. Minitab can be used to
calculate and plot the EWMA, which may also be referred to as the smoothed value. Use
Stat > Time Series > Single Exp Smoothing. . ., select Sales as the Variable: and specify
the Weight to Use in Smoothing by Use: 0.4 (the smoothing parameter, denoted by Alpha in
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Weight vs Lag for EWMA(0.4)

Figure 5.34 Weights for an exponentially weighted moving average.
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Minitab). Values for the smoothing parameter usually lie between 0 and 1. Under Graphs. . .
select Plot smoothed vs. actual. Under Storage. . . check Smoothed data, under Time. . .
enter Stamp: Day and click OK, OK. The plot in Figure 5.36 is obtained. Again the plot of the
moving average indicates that Sales appear to follow an initial upward trend with a suggestion
of a downward trend latterly.

The calculation, in practice, of EWMAs (the smoothed values) in Minitab is outlined in
Box 5.9. These first two smoothed values may be confirmed from the column of smoothed data
created in the worksheet and named SMOO1 by the software. Note, too, that the final three
smoothed values agree with those obtained in the schematic in Figure 5.37 (Under Options. . .
the user may change the number of observations used to calculate a smoothed value for time 0
from the default number of six.)

Day 11 12 13 14 15 16| 17 18 19 20
Weight 0.004|  0.007 0.011 0.019] 0.031 0.052 0.086] 0.144] 0240 0.400
Sales 63 110 70 83 177 65 112 66 56 163
EWMA(0.4) 110.7
Day 11 12 3 14 15 16 17 18 19 20
Weight 0.007) 0.011 0.019]  0.031 0.052 0.086) 0.144 0.240] 0400

Sales 63 110 70 83 177 65 112 66 56 163
EWMA(0.4) 75.8 110.7
Day 11 12 13 14 15 16 7 18 19 20
Weight 0.011 0.019 0.031 0.052| 0086 0.144] 0.240[ 0.400

Sales 63 110 70 83 177 65 112 66 5 163
EWMA(0.4) 88.9) 75.8 110.7

efc.

Figure 5.35 Schematic for calculation of an EWMA.
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Smoothing Plot for Sales
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Figure 5.36 Plot of EWMA and original data.

The cyclical nature of the sales data made the choice of length 5 for the simple moving
average a natural one. An arbitrary choice of 0.4 was made for the smoothing constant in order
to introduce the concept of the exponentially weighted moving average. So far we have
considered the moving average as a means of smoothing time series data. The moving average
evaluated at the current point in time may be used as a forecast of the value at the next point in

For single exponential smoothing it may be shown that the smoothed value at time 7 is
given by
a X (Data value at time ¢) + (1 — a)(Smoothed value at time 7 — 1).

The observed data values are considered to be at times 1, 2, 3, . . ., so to ‘kick-start’ the
calculations a smoothed value for time # = 0 is required. The default in Minitab is to take

the mean of the first six data values to be the smoothed value at time # = 0. From Table 4.8
it may be verified that this value is 81.667. Now the smoothed value at time 1 is
a x (Data value at time 1) 4 (1 — ) (Smoothed value at time 0)
= 0.4 x 5440.6 x 81.667
= 70.600,

and the smoothed value at time 2 is
a x (Data value at time 2) 4+ (1 — @)(Smoothed value at time 1)
=0.4 x93 +0.6 x 70.600
= 79.560,

etc.

Box 5.9 Calculation of exponentially weighted moving averages.
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Smoothing Plot for Thickness
Single Exponetial Method
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Figure 5.37 Forecasts of Thickness.

time, i.e. as a ‘one-period-ahead forecast’. By way of illustration, consider the data in Table 5.9
and worksheet Thickness. MTW, giving thickness (in angstroms, 1&) of anitride layer measured
at a fixed location on the first wafer in each one of 30 successive batches of wafers from a
microelectronics fabrication process. In terms of quality, the ability to forecast is of value — if
the forecast thickness for the next batch does not lie within specifications for thickness, then
there is the possibility of taking some action to adjust the process in some way to ensure that
thickness for the next batch is satisfactory.

With the data set up in two columns, Batch and Thickness, use Stat > Time Series >
Single Exp Smoothing. . ., select Thickness in Variable: and specify the Weight to Use in
Smoothing as Use: 0.2 (the default value for the smoothing parameter in Minitab). A title can
be created under Options.... Under Time... select Stamp and specify Batch. Under
Graphs. check Plot predicted vs. actual. Under Storage. . . check Fits (one-period-ahead
forecasts) and Residuals. The plot in Figure 5.37 is obtained.

The lowest panel to the right of the plot gives three measures of accuracy for the forecasts.
The first few rows of the worksheet, which includes the stored fits (one-period-ahead forecasts)
and residuals and four additional columns, calculated by the author in order to indicate how the
measures of accuracy are computed, are displayed in Figure 5.38.

The error (or deviation or residual — yes, all three names appear in this context in Minitab!)
is the actual value observed minus the forecast (fitted value) made of that value, that is to say,
RESIDUAL = DATA — FIT; this is a simple rearrangement of the formula DATA =FIT +
RESIDUAL. Thus, for example, for batch 11 the error is 1004 — 1005.2114 = — 1.2114. This

Table 5.9 Thickness data for nitride layer.

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Thickness 1000 1004 998 999 996 997 1012 1010 1007 1011 1004 1009 1005 995 997
Batch 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Thickness 994 970 983 972 981 965 966 962 975 978 976 971 993 972 976
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{7 THICKNESS.MTW *=
s C1 c2 c3 c4 c5 c6 c7 cs
Batch | Thickness FITS1 | RESH % Error APE AD SD
1 1| 1000 999.0000  1.0000 0.10000 0.10000  1.0000  1.000
2 2 1004 999.2000  4.8000 0.47809 047809  4.8000  23.040
3 3 998 1000.1600 -2.1600 -0.21643 021643 21600  4.666
4 4 999 999.7280 -0.7280 -0.07287 007287 07280  0.530
5 5 996 999.5824 -35824 -0.35968 0.35968  3.5824  12.834
6 6 997 998.8659 -1.8659 -0.18715 0.18715  1.8659  3.482
7 7 1012 998.4927 135073 1.33471 1.33471 135073 182.446
8 8 1010 1001.1942 88058 0.87186 087186 8.8058  77.542
9 9 1007 1002.9554  4.0446 040165 040165 4.0446  16.359
10 10 1011 1003.7643  7.2357 0.71570 071570 7.2357  52.356
1 11 1004 10052114 -1.2114 | -0.12066 0.12066  1.2114 1.468
12 12 1009 1004.9691  4.0309 0.39949 039949  4.0309  16.248

Figure 5.38 Columns C5-C8 indicate computation of accuracy measures.

error as a percentage of the observed thickness for batch 11 of 1004 gives the percentage error
as —0.12066%. APE in Figure 5.38 is the absolute percentage error, AD the absolute
deviation (error) and SD the squared deviation (error). Mean APE (MAPE), mean AD (MAD)
and mean SD (MSD) may all be used as measures of forecast accuracy and are displayed to
the right of the plot in Figure 5.37. Interested readers are invited to calculate the entries
displayed in columns C5—C8 and to verify the values for MAPE, MAD and MSD displayed
in Figure 5.37.

Forecasts were also generated using values 0.4, 0.6 and 0.8 for the smoothing constant
alpha. The accuracy measures obtained with the four values for the smoothing constant are
displayed in Table 5.10. Of the four smoothing parameters tested, an alpha of 0.6 performs best
in that it gives the lowest values for MAPE, MAD and MSD. Minitab also provides a procedure
for the selection of an optimal value for the smoothing constant based on the fitting of an
autoregressive integrated moving average (ARIMA) time series model to the data. (These
models are not considered in this book.) This procedure was implemented by checking
Optimal ARIMA as Weight to Use in Smoothing. For the thickness data this yields an alpha
of 0.5855. In addition, Generate forecasts was checked with Number of forecasts: set to 1
and Starting from origin: 30 specified. The corresponding plots are shown in Figure 5.39.

Comparison of this plot with the one in Figure 5.37 reveals the superior performance of the
smoothing parameter 0.5855 over that of the smoothing parameter 0.2. The reader should note

Table 5.10 Accuracy measures for a series of values of the smoothing constant.

Smoothing constant o MAPE MAD MSD
0.2 0.806 7.92 118.9
0.4 0.684 6.73 82.8
0.6 0.650 6.40 76.5

0.8 0.662 6.51 82.0




TIME-WEIGHTED CONTROL CHARTS 179

Smoothing Plot for Thickness
Single Exponetial Method

Variable
1010 r‘\\ A n —e— Actual
RO /:\' - —m— Fits
A / ¥ ﬁl\ \ Forecasts
1000 ¥ '\\(l‘- / \\ . —4A— 95.0% PI
N VA W Smaothing Constant
g h o o Alpha  0.585518
|3
o 990 \ ' Accuracy Measures
a \ e MAPE 0.6484
2 " . \\ MAD  6.3825
= 9804 | kg £y MSD_ 76.3499
N A A
1\, ol
f VRN F 3\\1 J V
970+ | ‘,‘ LAY
A
N
960 &

3 6 9 12 15 18 21 24 27 30
Batch

Figure 5.39 Forecasts with optimal alpha.

that the accuracy measures displayed in the panel to the right of the plot are marginally lower
than those listed in Table 5.10 for smoothing constant 0.6. The diamond shaped symbol on the
right of the plot represents the forecast thickness of 976.5 for the 31st batch. The triangular
symbols define lower and upper 95% prediction limits of 960.9 and 992.1 for the forecast.
These limits are such that 95 times out of 100 in the long term the actual observation will lie in
the interval. The forecast and the prediction limits are displayed in the Session window.

In addition to their application for smoothing and forecasting, moving averages may be
plotted in control charts. As moving averages are linear combinations of random variables the
results on linear combinations of random variables presented in Chapter 4 may be used to
obtain formulae for standard deviations of moving averages. The mathematics will not be
presented. Details may be found in Montgomery (2009, pp. 419—430). Only the EWMA
control chart will be considered in this book.

5.3.2 Exponentially weighted moving average control charts

The EWMA control chart performs well at detecting small changes in a process mean. For
example, for a normally distributed random variable, the average run length (ARL) for
detection of a one standard deviation shift in the process mean using an individuals chart is
approximately 44. For an EWMA chart with smoothing constant 0.4 the ARL for detection of
such a shift is approximately 11. However, the EWMA chart does not detect relatively large
shifts in a process mean as quickly as a Shewhart chart. Hunter (1989, pp. 13-19)
demonstrated that the EWMA chart with smoothing constant 0.4 performs similarly to the
Shewhart chart employing Minitab tests 1, 2 (with eight points in a row employed rather than
the default nine), 5 and 6, i.e. the Western Electric Rules. A discussion can be found in
Montgomery (2009, pp. 422-424).

It can be shown that the standard deviation of the EWMA is given by the expression in
Box 5.10. For the temperature data of Table 5.1 the estimates of process mean and
standard deviation, based on the first 20 data values, were 27.245 and 0.699 9, respectively.
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The standard deviation of the EWMA is

a\/zfa {1—(1761:)2’},

where 7is the sample number and « is the smoothing parameter. In the long term the value
of (I — a)* becomes negligible since 0 < & < 1 and the standard deviation is effectively

a
2—a

o

Box 5.10 Standard deviation of EWMA.

27.245 £3 x 0.6999 7 0.4(; 1= 27.245 +£1.049 85
UCL = 28.295
LCL = 26.195

Box 5.11 Calculation of long-term EWMA chart limits.

The long-term three-sigma limits for an EWMA control chart with smoothing parameter 0.4,
for example, could therefore be calculated as shown in Box 5.11.

When all 25 data values (available in Temperature. MTW) have been entered into a
column, to create the chart in Minitab use is made of Stat > Control Charts > Time-
Weighted Charts > EWMA. ... Under Subgroup sizes: 1 was specified. The Weight of
EWMA: is the smoothing constant and 0.4 was selected. Under EWMA Options. .. and
Estimate, use of samples 1 : 20 and the Rbar method were indicated so that the estimates of
process mean and standard deviation would be the same as those used in the setting up of the
individuals chart of the data earlier. The chart in Figure 5.40 was obtained. As with the
individuals chart in Figure 5.3 the 25th point is below the lower chart limit, thus providing
evidence of a potential special cause affecting the process. (The reader should note the
narrower limits for the first few samples.)

Consider again the sequence of weights «, a(l1 — @), a(l — @)%, a(l —a)®, ... used in
exponential smoothing. With o =1 these weights become 1, 0, 0, 0 . . . so that the EWMA
would simply be the most recent observation. Just for fun, the reader is invited to create the
EWMA chart of temperature as in Figure 5.40 but with smoothing constant 1 and to check that
it is identical to the Shewhart chart in Figure 5.4.

Further simulated data for the rod cutting process described in Section 5.1 will be used to
illustrate the use of the EWMA for data collected in subgroups. In the scenario illustrated
in Figure 5.41 the process mean was changed from 60.000 to 60.008 after sample 40.
The procedure computes the sample means and applies the EWMA methodology to the
sample means. The subgroups comprised the rows of columns x1, x2, x3 and x4. Observe that
the EWMA chart, with limits smoothing constant 0.2, signalled this process change at sample
number 54. (Limits were based on the first 25 samples and the default pooled standard deviation
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Figure 5.40 EWMA control chart of temperature.
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Figure 5.41 EWMA control chart for rod length.

with unbiasing constant method of estimation of process standard deviation was used.) The data
are available in RodsScenarioS.MTW. The reader is invited to verify that an Xbar chart also
signals the process change at sample number 59 via Test 2. This example illustrates the ability of
the EWMA chart to detect a small shift in the process mean earlier than a Shewhart chart.

5.3.3 Cumulative sum control charts

The most recently plotted point in a Shewhart control chart contains only information from the
most recent sample. The latest plotted point in a control chart of moving averages of length 5
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Table 5.11 CUSUM for yield.
Run No. i Yield Target Deviation CUSUM §;

0 * * * 0
1 115 100 15 15
2 95 100 =5 10
3 110 100 10 20
4 105 100 5 25
5 95 100 -5 20
6 100 100 0 20
7 110 100 10 30
8 100 100 0 30
9 90 100 —-10 20
10 85 100 —-15 5

contains equally weighted information from the five most recent samples. The latest plotted
point in an EWMA control chart contains weighted information from all the samples, but the
weights decrease exponentially with the age of the sample. The cumulative sum (CUSUM)
chart is such that in the latest plotted point information from all the samples is included with
equal weight. The concept of the CUSUM chart is radically different from all charts
encountered so far in this chapter. It was proposed by Ewan Page (1954) in the UK thirty
years after Walter Shewhart proposed the charts that bear his name in the USA. A simple set of
data will be used to introduce the basic principle of the chart.

Consider a batch process with target for yield of 100 units. The yield values for runs 1 to 10
are tabulated in Table 5.11. The first step in computing the CUSUM values is the calculation of
the deviation of yield from target for each run. It is necessary to define a CUSUM value of zero
corresponding to run no. 0. The CUSUM value corresponding to, say, run no. 3 is denoted by S3
and is the sum of the deviation for that run and the deviations for all previous runs, i.e. in this
case S3=15 + (= 5) + 10 =20. Calculation can be speeded up on observing that once data
for a run is available then:

New CUSUM = Previous CUSUM + New deviation.

The basic CUSUM chart is a plot of CUSUM (S;) versus run number (i) as displayed in
Figure 5.42.

Table 5.12 Mean yields for some sets of consecutive runs.

Set Runs Mean yield Segment joining Slope of segment
1 4 to 9 inclusive 100 P3 to P9 0
2 1 to 5 inclusive 104 PO to P5 4

3 5 to 9 inclusive 99 P4 to P9 -1
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CUSUM plot for Yield
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Run No. i

Figure 5.42 CUSUM plot for yield.

The reader is invited to confirm the mean yield values given in the third column of
Table 5.12. The set of runs 4 to 9 inclusive has mean 100. The slope of the line segment joining
the points P3 and P9 in the plot may be calculated as

So—83 20-20
9-3 6

The reader is invited to check the other two slopes given in Table 5.12. Observe that the
slope indicates by how much the mean yield for a consecutive set of runs differs from the target
yield of 100. Thus the fundamental property of the CUSUM plot is that the slope indicates the
process mean performance over the corresponding time period.

In order to illustrate this, a set of 90 yields was simulated using Minitab. The first 40 were
from the N(100, 102) distribution, the next 20 were from the N(95, 102) distribution and the
final 30 from the N(103, 10%) distribution. The target was again taken to be 100. The CUSUM
plot is shown in Figure 5.43. The data are available in the worksheet Yields. MTW.

Reference lines have been added to indicate the three phases in terms of the distribution of
yield. In the first phase the ‘horizontal’ appearance of the CUSUM plot corresponds to the
process operating ‘on target’. In the second phase the downward trend in the plot corresponds
to a process operating ‘below target’. In the final phase the upward trend corresponds to a
process operating ‘above target’. Formal detection of signals of possible special cause
variation may be carried out using a V-mask. To illustrate, let us suppose that we decide
to set up a CUSUM chart with a V-mask when the first 25 yields are available from the
simulation referred to above. The data are available in Yields25.MTW. In Minitab we would
need to use Stat > Control Charts > Time-Weighted Charts > CUSUM.... With All
observations for a chart are in one column: selected, Yield is specified as the variable
to be charted. Subgroup sizes: 1 and Target: 100 are entered. Using CUSUM Options. . .,
under Estimate, 1:25 may be entered via Use the following subgroups when estimating
parameters. Under Plan/Type, for Type of CUSUM, choose Two-sided (V-mask) and for
Center on subgroup: enter 25. Accept the default CUSUM plan and all other defaults. The

0.
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resulting chart is displayed in Figure 5.44. (The author considers it potentially misleading that,
having specified Target: as 100 during the creation of the chart, Target = 0 appears as alegend

CONTROL CHARTS

CUSUM plot for Yield
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Figure 5.43 CUSUM for simulated Yield data.

to the right of the plot, so he clicks on it and deletes it.)

The midpoint of the line segment, which forms the blunt end of the V-mask, is placed on
the point specified using Center on subgroup:. If all the previously plotted points are
‘embraced’ by the arms of the mask then the process may be deemed to be in a state of
statistical control, exhibiting no signal of any potential special cause variation. The mask can
then be adopted for further monitoring of the process and can be thought of as being moved to

each new point as it is plotted.

Vmask Chart of Yield
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Figure 5.44
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CUSUM chart with V-mask for first 25 simulated Yields.
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Figure 5.45 CUSUM chart with signal of potential special cause variation.
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On plotting the point for the 49th run the chart appears as shown in Figure 5.45. The fact
that at least one point is not embraced by the arms of the V-mask is the signal of potential
special cause variation from this type of CUSUM chart. As with the EWMA chart, the CUSUM
chart is very sensitive to small changes in the process mean.

If one selects One-sided (LCL,UCL) as the Type of CUSUM, with all other choices as
before then the chart in Figure 5.46 is the result. This version of the CUSUM chart consists of
two one-sided CUSUM plots. Here the point below the LCL for run 49 signals potential special

CUSUM Chart of Yield
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Figure 5.46 CUSUM chart with signal of potential special cause variation.
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cause variation affecting the process. CUSUM charts may also be used with measurements
recorded in subgroups. Montgomery (2009, pp. 400—419) provides comprehensive details.
Caulcutt (1995, pp. 108-109) refers to the use of CUSUM charts for “post mortem’ analysis of
process data. This approach may even be used with data for which there is no specific target
value. By creating a CUSUM chart of the first type considered, with target set equal to the
overall mean for the data series, one can often gain useful insights into process performance —
marked changes in slope indicate the likelihood of changes in the process mean. A paper by
Henderson et al. (2010) provides examples and data sets.

5.4 Process adjustment

5.4.1 Process tampering

The late Dr W. Edwards Deming often carried out funnel experiments during his presentations.
These experiments were developed in order to illustrate the assertion that ‘if anyone adjusts a
stable process to try to compensate for a result that is undesirable, or for a result that is extra
good, the output will be worse than if he had left the process alone’ (Deming, 1986,
pp. 327-331). In the experiments a target point is set up on a sheet of foam placed on a
table and marbles are dropped, one by one, through a funnel onto the foam. Initially the funnel
is aimed directly at the target. Following each drop the point of impact of the marble is recorded
and one of a series of four rules is applied to determine the next point of aim.

1. Leave aim unchanged.

2. Adjust aim from previous aim position to ‘compensate’ for the deviation from target of
the last bead dropped.

3. Adjust aim to opposite side of target from point of rest of last bead.
4. Adjust aim to point of rest of last bead.

Results from the experiments may be simulated, and output from simulations of the four
scenarios, generated using a Minitab macro written by Terry Zeimer in 1991 (http://www.
minitab.com/en-GB/support/macros/default.aspx ?q=deming+funnel&collection=LTD), is
displayed in Figure 5.47. Further information on the macro will be provided in Chapter 11.
(With one of the four plots active, Editor > Layout Tool. . . was used to display all four plots
in a single Minitab graph.) The points represent 100 impact points under each scenario.

The scaling of both axes is the same in each plot and the target is at the central point of the
grid in both. The top right-hand plot (Rule 2) exhibits greater variation about the target than
does the top left-hand plot (Rule 1). Rule 1 is optimum, Rule 2 yields stability but increased
variability, Rule 3 leads to instability with oscillation and Rule 4 to what is known as random
walk behaviour. The fundamental point of the experiment is to demonstrate that tampering
with a stable process leads to increased variability in performance.

In order to demonstrate the effect of Rule 2 type ‘tampering’ on a process, consider again
the rod-cutting process operating ‘on target’ and producing rods with lengths which are
normally distributed with mean 60.00 mm and standard deviation 0.02 mm. For the purposes
of illustration consider an individuals chart, with three-sigma limits, for the length of a single
rod selected at random from the process output at regular intervals. The chart limits are at 59.94
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Figure 5.47 Simulations of the Deming funnel experiments.

and 60.06. If an operator of the process applied Rule 2 type tampering then he would respond to
an observed length of 60.03 mm by reducing the process aim by 0.03 mm from the previous
aim and to an observed length of 59.98 by increasing the process aim by 0.02 mm from the
previous aim. Were an operator of the process to apply Rule 3 type tampering then he would
respond to an observed length of 60.03 mm by changing the process aim to 0.03 mm below
target,i.e.t059.97, and to an observed length of 59.98 by changing the process aim to 0.02 mm
above target, i.e. to 60.02. Under Rule 4 type tampering an operator would respond to an
observed length of 60.03 mm by changing the process aim to 60.03 mm and to an observed
length of 59.98 mm by changing the process aim to 59.98 mm. Individuals control charts for
100 simulated values under all four rules are shown in Figure 5.48. In each case the scaling on
the vertical axis is the same to facilitate visual comparison of performance.

The increased variability under Rule 2 is again apparent, and some of the plotted points
lie outside the historical chart limits in the case of Rule 2. The standard deviation of the set of
100 lengths obtained under Rule 1 is 0.0187, which is close to the specified standard
deviation of 0.02. The standard deviation of the 100 lengths obtained under Rule 2 is 0.0263.
Theoretically it can be shown that, under Rule 2, the variability, as measured by standard
deviation, is increased by a factor of v/2, i.e. by approximately 40%. Thus the tampering
leads to increased variability, with a consequent reduction in the capability of the process to
meet customer specifications.

Under Rule 1 the process displays what Shewhart referred to as controlled variation and
what is widely referred to as common cause variation. A point outside the control limits on the
Shewhart individuals chart would be taken as a signal of the possible occurrence of a special
cause of variation. Such a signal would lead those involved in running the process to search for
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any special causes, e.g. a damaged cutting tool or a new and poorly trained operator. Having
identified such special causes, effort would typically be made to eliminate them. Of course,
some special causes may correspond to evidence of improved process performance, in which
case it would be desirable to retain rather than eliminate.

5.4.2 Autocorrelated data and process feedback adjustment

George Box and Alberto Luceno applaud the Six Sigma strategy for quality improvement
for the recognition that ‘even when best efforts are made using standard quality control
methods, the process mean can be expected to drift’ (Box and Luceno, 2000, pp. 297-298).
When successive process observations are not independent the data is said to be auto-
correlated. The autocorrelation structure in the data enables a forecast of the next
observation to be made from the available data. With the availability of a compensating
factor whose effect on the process is known, appropriate adjustment to the level of the factor
can be made in order to correct the predicted deviation from target. The procedure may be
referred to as feedback adjustment.

Independence may be checked informally by examining a scatterplot of X; versus X; _ 1, i.e.
of each observation plotted against the previous observation. The scatterplot in Figure 5.49 is
for the rod cutting process operating without tampering under Rule 1. Clearly there is no lag 1
autocorrelation, i.e. no correlation between X; and X; ;.

The type of scatterplot in Figure 5.49 may be thought of as the ‘fingerprint’ of a typical
process for which successive observations are independent. A formal analysis may be carried
out by constructing a correlogram or autocorrelation function, consisting of a line graph of the
autocorrelations at lag k plotted against k. The lag 1 correlation is the correlation between X;
and X;_;, —0.134 in this case, and the lag 2 autocorrelation is the correlation between X; and
X;_»,0.168 in this case, etc. Correlograms generated using Minitab include significance limits
indicating any autocorrelations which differ significantly from 0. The plot in Figure 5.50 was
created using Stat > Time Series > Autocorrelation. None of the autocorrelation line

Lag one autocorrelation plot

60.0504 *
L
. °
-
| . .
60.025 . . %
L] °* .
[y .
%’; e o * o * 0' LY .c » .
L]
S 60.000- . & % ".,::. o "
= > o . .
L . o . L]
i e L PR E T im ¥ »
. °
59,975+ - .
L] .® L]
L]
-
-
59.950 : . . ’
59.950 50.975 60.000 60.025 60.050

Previous length

Figure 5.49 Lag 1 autocorrelation plot for data under Rule 1.
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Autocorrelation Function for Length
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Figure 5.50 Correlogram for lengths obtained under Rule 1.

segments protrude beyond the limits, so there is no evidence of dependence in the time series of
rod lengths in this case.

Consider a low-pressure chemical vapour deposition (LPCVD) process used in the
fabrication of microelectronic circuits. A nitride layer is to be built up to a target thickness
of 1000 A on successive batches of silicon wafers. Let X; represent a measurement of the

thickness of the layer on a test wafer selected from the ith batch. Data from a simulated
realization of such a process are plotted in Figure 5.51.
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Figure 5.51 Time series plot of thickness data.



PROCESS ADJUSTMENT 191

Lag one autocorrelation plot
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Figure 5.52 Lag 1 autocorrelation plot for thickness.

Here the thickness appears to shift and drift with time. A scatterplot of X; versus X;_ | is
shown in Figure 5.52. Unlike the scatterplot in Figure 5.49, the one in Figure 5.52 exhibits
positive autocorrelation at lag 1. This scatterplot may be thought of as a typical fingerprint of a
process for which successive observations are not independent.

The autocorrelation function (correlogram) is shown in Figure 5.53. Montgomery (2009,
p- 446) comments that for such variables, even with moderately low levels of autocorrelation,
conventional control charts will ‘give misleading results in the form of too many false alarms’.

Autocorrelation Function for Thickness
(with 5% significance limits for the autocorrelations)
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Figure 5.53 Correlogram for thickness.
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Time Series Plot of Thickness
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Figure 5.54 Run chart for batches both with and without adjustment.

Here the line segments representing the autocorrelation at both lag 1 and lag 2 protrude
through the upper limit. Thus there is evidence that successive observations are not
independent for this process. The autocorrelation structure in the data enables a forecast
of the next observation to be made from the data. With the availability of both a forecasting
procedure and a compensating factor whose effect on the process is known, appropriate
adjustment to the level of the factor can be made in order to correct the predicted deviation
from target. The exponentially weighted moving average is a forecasting tool used in
industry in this context.

The assumption is made that the effect of any change in the level of the compensating factor
will be complete by the time the next observation is made, i.e. that the process may be
considered to be a responsive system. For the LPCVD process referred to earlier, processing
time is a potential compensating factor with a gain of 30, i.e. for every extra minute the wafers
remain in the LPCVD reactor another 30 A can be expected to be added to the thickness of the
nitride layer. If the most recent batch had spent 34 minutes in the reactor and the forecast
thickness for the next batch was 940 10\, then, provided there were no random errors involved, a
control action or adjustment of 42 minutes to the processing time would yield the required
target thickness of 1000 A. However, if the forecast was obtained from an EWMA with
smoothing constant 0.4 then the actual adjustment made would be 0.4 x (+2)= +0.8 min-
utes. A simulated realization of the process without the adjustment procedure in operation is
shown in Figure 5.54, together with a simulated realization of the process with the adjustment
procedure in operation.

Comparison of the plot of thickness for the second 100 batches (adjustment in operation)
with that for the first 100 batches (no adjustment in operation) reveals the benefit. The earlier
‘wandering mean’ behaviour has been replaced with much more stable behaviour and reduced
process variability, which in turn leads to increased process capability. The procedure may be
referred to as feedback adjustment, and further details, including discussion of choice of a
suitable value for the smoothing constant and of applications, may be found in Henderson
(2001), Montgomery (2009, p. 529) and Box and Luceno (1997).
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5.5 Multivariate control charts

‘When monitoring the location of a single measured quality characteristic that remains stable and
predictable, using a Shewhart chart with three-sigma limits and no other tests for evidence of
special cause variation, the frequency of false alarm signals is 1 in 371 in the long term. In other
words, one sample in 371 would give rise to a point plotting outside the chart limits although no
special cause was affecting the process. If the locations of six independent measured quality
characteristics which all remained stable and predictable were monitored using Shewhart charts
the false alarm rate would be 1 in 62 in the long term, i.e. there would be six times as may false
alarms to deal with. Typically a multivariate set of quality characteristics will not be independent.

For dependent bivariate random variables having a bivariate normal distribution, the
equivalent of a point lying between the three-sigma limits in the univariate case is a point lying
within a control ellipse in the scatterplot. Evidence of special cause variation could be
overlooked through monitoring of the quality characteristics separately. Although the creation
of control ellipses for bivariate data is quite feasible, the time sequence of the observations
cannot be readily indicated. With three or more variables, representation of control ellipsoids
and hyper-ellipsoids is impractical.

Hotelling’s T2 statistic may be plotted in a control chart in order to monitor a group of
measured dependent quality characteristics. The theory underlying the chart assumes that the
variables have a multivariate normal distribution. In order to construct the chart, estimates have
to be made from the data of the means of the variables and of their covariance matrix. Data on
short-circuit current (x) and fill factor (y) for photovoltaic cells, where a single cell was
sampled at regular intervals from production, are in PV.MTW. The 7° chart may be thought of
as the multivariate equivalent of the Xbar chart, and Minitab also provides a generalized
variance chart, which may be thought of as the multivariate equivalent of the R chart or S chart.

In order to create the charts, use Stat > Control Charts > Multivariate Charts >
Tsquared-Generalized Variance.... The two variables to be charted are selected and
Subgroup sizes: 1 specified. Estimation was based on the first 30 samples. The charts are
shown in Figure 5.55.

Tsquared-Generalized Variance Chart of x, y
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Figure 5.55 77 and generalized variance charts.
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There are no signals of potential special cause variation affecting the process.
Montgomery (2009, p. 499) gives a detailed account of multivariate control charts.

5.6

1.

Exercises and follow-up activities

For the data you collected for Exercise 1 in Chapter 2, use Minitab to create an
appropriate control chart.

. Weekly checks of water quality are made at a chemical plant that manufactures products

for use in the manufacture of microelectronic circuits. Values of the water quality index
(WQI) are provided in Water MTW. Create an individuals and moving range pair of
control charts and verify that the WQI appears to be stable and predictable. Verify also
that it is reasonable to consider WQI to be normally distributed by creating a normal
probability plot of the data. Obtain estimates of the mean and standard deviation of the
distribution from information on the control charts and compare with the estimates
given on the normal probability plot.

. Inacontinuous process for the manufacture of glass the soda level in the molten glass in

the furnace is monitored daily. A series of 20 consecutive daily values are given in the
worksheet Soda.MTW.

(i) Create an individuals chart of the data, specifying that estimation is to be carried
out using subgroups 1 to 20 and with all the available tests implemented. Observe
that the process is in a state of statistical control and that therefore the decision may
be taken to monitor soda level using the individuals chart created.

(ii) Right-click on the chart and select Update Graph Automatically. Use Window
> Tile to ensure that the control chart and the worksheet with the data may be
viewed simultaneously.

(iii) Add the next five data values 12.96, 12.88, 12.89, 13.09 and 12.79 to the worksheet
and observe the data points being added to the plot as they are entered into the
worksheet. You should observe that Test 6 signals possible special cause variation
affecting soda level on plotting the final value.

(iv) Recreate the chart using S Limits under I Chart Options. .. with 1 2 3 inserted.
Observe from the revised chart how Test 6 has given rise to the signal.

Control charts may be used to ascertain whether or not there is evidence that a process is
not operating on target through use of Parameters under Options. . .. Suppose that the
target level for soda in the previous exercise was 13.00. With the 20 daily soda levels in
Soda.MTW create an individuals chart using Parameters to set the mean at 13.00.
(Do not enter a value in the Standard deviation: window.) Note how the chart yields a
signal from the eleventh sample that the soda level is off target. The use of a control chart
in setting or checking process aim is described in detail by Wheeler and Chambers
(1992, pp. 194-204).

The worksheet PilotOD.MTW gives data on samples of four output shafts taken at
regular intervals from a production process. (Data reproduced by permission of the
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Statistics and Actuarial Science Department, University of Waterloo, Canada, from
Steiner et al., 1997, p. 6). The values represent deviations from nominal (micrometers)
for the diameter of the pilot.

(i) Create Xbar and R charts of the data and verify that, when only Test 1 is used, the
15th sample signals a possible special cause affecting the process.

(ii) Verify that when all tests are used the 4th and 15th samples both provide signals.

(iii) Given that there was a problem identified with the process during the period when
the 15th sample was taken, create the charts with the 15th sample omitted from the
calculations of the limits and comment on process behaviour.

. Refer again to the camshaft length data discussed in Section 5.1.3 and create Xbar and
R charts for supplier 2 as in Figure 5.12, but before doing so create a column named
Subgroup containing the numbers 1 to 20 each repeated 5 times using Calc > Make
Patterned Data > Simple Set of Numbers. ... The following entries are required:

Store patterned data in: Subgroup
From first value: 1

To last value: 20

In steps of: 1

Number of times to list each value: 5
Number of times to list the sequence: 1

In addition, use the Data Options. . . facility to exclude the points corresponding to
subgroups 2 and 14 from the plots. The dialog required is shown in Figure 5.56.

A text box was added to the charts indicating the nature of the special cause identified
for subgroup 2. In Figure 5.57 the mouse pointer is shown positioned over the text tool
icon in the process of creating text indicating the nature of the special cause — operator
error — corresponding to the omitted subgroup 14. Once text has been entered double-
clicking on it yields a menu that may be used, for example, to change font size.

Xbar-R Chart - Data Options =
Subset |

Indude or Exclude
" spedfy which rows to indude
* Specify which rows to exdude

Spedify Which Rows To Exdude

" Norows

& Rows that match Condition... ( - L
Ciidetoe .)(bar-R Chart - Subset [

" Row numbers: Tength Condition:

s
Suppl Subgroup = 2 or Subgroup =14|
Supp2

Subgroup

¥ Leave gaps for exduded points

Figure 5.56 Specify subgroups for exclusion from plot.
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Figure 5.57 Xbar and R charts with gaps for excluded subgroups.

Although Minitab’s Assistant flow chart suggests that the subgroup size should be at
least 9 (see Figure 5.1) for Xbar and S charts to be used, analyse the data for supplier 2
using them and demonstrate that the same conclusions would be reached as via the Xbar
and R charts.

. The file Etch. MTW contains data on a dry etch process which etches silicon dioxide off

silicon wafers during a batch microelectronic fabrication process (Lynch and Markle,
1997, pp. 81-83). The data are ©Society for Industrial and Applied Mathematics and
©American Statistical Association and are reproduced by permission of both organiza-
tions. During each batch run 18 wafers were processed and etch rate (angstroms per
minute) was measured at nine positions on each wafer in a selection of six wafers from
the batch. We will assume that the set of 54 measurements from each run constitutes a
rational subgroup for the creation of Xbar and S (mean and standard deviation) charts of
the 27 subgroups. In order to set up the data for charting use Data > Stack > Rows. . .
as indicated in Figure 5.58. There were three phases involved. The first nine runs were
carried out when the multi-wafer etch tool was only use intermittently, and the second
nine runs were carried out when the tool was in regular use. Before the final nine runs
were made the mass flow controller for CHF; was recalibrated. Note how it is necessary
to expand the Phase column during the stacking operation into a new column named
Stage. Note too that in specifying the name Etch Rate for the column in which the
stacked data is to be stored it is necessary to enclose the name in single quotes.

Each consecutive group of 54 values in the Etch Rate column constitutes a subgroup
for charting purposes. Create the Xbar and S charts by Stage and comment on the
changes in process performance. Montgomery (2009, p. 251) advises that Xbar and S
charts should be used in preference to Xbar and R charts when either the subgroup size is
greater than 10 or the sample size is variable. Compare Xbar and R charts of the data
with Xbar and S charts.
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Phase RUN Wafer Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

1 58114 56841 67189 57714 58163| 54545 54304 57572| 54014
2 56081 55083 55486 55339 65516 537.36 53359 53771 52640
3, 57713 568 28 569.96 588 71 577 45 556.18 55325 51221 54176

Stack Rows B 6779 58345 54025
—— 57768 55299

Rows ta be stacked are n the falowing colimns:
‘Site 1'-Site &

57329 53284
56278  548.15
567.09 | 56159
550 90 54761
552 99 54934
566.96 547.36
55769 | 55054
54495 53446
54061 530.49
54465 53011
54335 52238
53225 517.39
541.0% 524.59
54830 52163
56422 55243

Store stacked data in: ‘Etch Rale’

I~ Store row subsarptsin: |

[~ Store column subscrots in: [

[¥ Expand the following columns whie stadng rows:
| Phase
Store the expanded columns in:
[Stage

I

o e O I L I I A Ry p

Figure 5.58 Stacking rows.

8. Bisgaard and Kulachi (2000) refer to a problem with off-centre bottle labels that had
‘bothered management for some time’. The excessive variation in the position of the
labels detracted from the appearance of an expensive product and there was concern that
this was affecting the company’s share of the decorating market.

The line foreman believed the labels were off centre because the there was a lot of
variation in bottle diameter. He said that the Quality Control Department had
attempted a capability study but had ‘got nowhere’. The Maintenance Department
claimed that the specifications were too tight and that the labels varied as well as the
bottles. In an attempt to gain some insight into the problem, the deviations of label
heights from target for 60 consecutive bottles were measured. The data for this
example, available in the file Labels.xls, are from ‘Finding assignable causes’ by
Bisgaard and Kulachi and are reproduced with permission from Quality Engineering
(© 2000 American Society for Quality).

(i) Treat the data as 12 consecutive subgroups of size 5 and create Xbar and R charts
and comment.

(ii) Treat the data as 60 consecutive individual measurements and create an individuals
chart. Note the repetitive pattern.

(iii) The schematic diagram in Figure 5.59 indicates how labels were applied to bottles
by a rotating drum with six label applicators spaced around its surface. Given that
the first bottle in the data set had its label applied by the first applicator, set up a
column named Applicator containing the sequence of numbers 1 to 6 repeated
10 times using Calc > Make Patterned Data > Simple Set of Numbers. . .. The
following entries are required:

Store patterned data in: Applicator
From first value: 1

To last value: 6

In steps of: 1

Number of times to list each value: 1
Number of times to list the sequence: 10



198

CONTROL CHARTS

—_—le Bottles

()O()()( (I XXX

Label application
drum

Figure 5.59 Label applicator.

(iv) Unstack the data to obtain columns of Deviations for each applicator and verify, by
creating individuals charts for each, that the individual applicators appear to be
performing in a stable, predictable manner.

(v) Create a boxplot of Deviation by Applicator and comment.

According to the authors, the moral of this story is that for process investigations, data
should be plotted not only in time order but also in any other way that makes sense
and preferably as individuals and not just as averages.

. Montgomery (2009, pp. 292-298) gives an example on the manufacture of cans for

frozen orange juice. The cans were spun from cardboard stock and a metal base panel
attached. Every 30 minutes during production a sample of 50 cartons was inspected
and the number of nonconforming cans recorded. Data for the first 30 samples
are given in Cansl.xls and are reproduced by permission of John Wiley & Sons Inc.,
New York.

(i) Create a P chart of the data and verify that samples 15 and 23 signal the occurrence
of possible special cause variation.

Process records indicated that there was a problem with a new batch of raw
material at the time that sample 15 was taken and that an inexperienced operator
had been involved in running the process at the time sample 23 was taken. As
assignable causes could be found for these two ‘out of control’ points it was
decided to recalculate the limits with those samples excluded.

(ii) Create the revised P chart. The author suggests that under P Chart Options. . .
> Estimate you specify the sample to be used by employing Use the following
subgroups ... and entering 1: 14 16:22 24: 30.

You should find that sample 21 now signals possible special cause variation. No
assignable cause could be determined so it was decided to use the current chart with
centre line at 0.215 and lower and upper limits of 0.041 and 0.389 for further process
monitoring. At the same time, as the proportion of non-onforming cans was running
at over 20%, it was decided to have adjustments made to the machine which
produced the cans. A further 24 samples were taken and the extended data set is
provided in Cans2.xls.
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(iii)) Update the P chart to show the additional data and note how it indicates that the
adjustments were beneficial. (Note that under P Chart Options. . . > Estimate
you will need to specify the sample to be used by employing Use the following
subgroups ... and entering 1:14 16:22 24:30).

(iv) Create a Phase column with value 1 in the first 30 rows and value 2 in the next
24 rows and use it to create P charts for the two phases. The author suggests that
under P Chart Options. .. > Estimate you specify the sample to be used by
employing Use the following subgroups ... and entering 1: 14 16:22 24:30
31:54. You should find that the chart for Phase 2 has centre line at 0.111 and lower
and upper chart limits of 0 and 0.244, respectively.

Further data from the second phase of operation of the process are provided in Cans3.
xls. Chart all the available data and comment on process performance.

Repeat the exercise using individuals charts of the actual proportions of
nonconforming cans in the samples.

10. A department within a major organization prepares a large number of documents each
week, with the numbers being similar from week to week. Table 5.13 gives the number
of errors detected each week during final checks for a series of 15 weeks.

(i) Create a C chart of the data.

(ii) Given that a senior member of staff responsible for document preparation was
on sick leave during week 4, explain why the chart with revised upper limit
of 14.83, obtained on omitting the data for Week 4, could be ‘rolled out’ for
routine monitoring.

Additional data are given in Table 5.14.

(iii) Plot the additional data, with the revised limits used in (ii), explain how the
chart provides evidence of process improvement and state what action you
would recommend.

11. The worksheet PCB1.MTW gives counts of nonconformities on samples of 10 printed
circuit boards taken from successive batches of a particular type of board built in work
cell A at a factory.

(i) Create a U chart of the data and use the formulae in Appendix 3 to check the centre
line and chart limits.
Table 5.13 Data for weeks 1-15.
Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No.oferrors 7 8 3 22 1 3 10 3 13 9 13 10 4 2 7

Table 5.14 Data for weeks 16-30.
Week 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
No. of errors 3 4 6 7 6 4 3 6 3 4 4 2 5 9 2
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(i)

(iii)

Since the sample size is constant here a C chart may be used. Create a C chart of
the data and note that it is a scaled version of the U chart.

The advantage of the U chart, in terms of assessing process performance, is
that it displays nonconformities per unit.

In work cell B a different type of board is manufactured and the sample
size used for the monitoring of nonconformities varies. The worksheet PCB2.
MTW gives counts of nonconformities on a series of samples of boards.

Create a U chart of these data and comment on process performance.

12. In Section 5.2.1 an example on the use of a P chart to monitor the proportion of
stroke patients receiving acute stroke unit care was given. It was also noted that
the assumption of a binomial distribution is unlikely to be valid. An alternative
approach to the use of a P chart in this case is to compute the proportion of patients
receiving acute stroke unit care for each month and to create an individuals chart of
these proportions.

13.

®

(ii)

Retrieve the data from the worksheet ASU.MTW, calculate the proportions and
create an individuals chart of the proportions with limits based on the first 15
samples and all available tests implemented.

There are various points to note. First, the centre line on the individuals chart
is at 0.646 4 as opposed to 0.635 2 in Figure 5.25. This is because the P chart
procedure calculates the centre line as the total number receiving acute stroke
unit care in the first 15 months (477) divided by the total number of stroke
patients in the first 15 months (751). Second, the UCL is 1.024 7, an impossible
value for a proportion! Third, unlike the P chart in Figure 5.25 there are no signals
indicating an improved proportion of patients receiving acute stroke unit care.
However, note that the last nine points are very close to being on the upper side of
the centre line.

Re-create the chart using S Limits under I Chart Options. . . to Place bounds on
control limits, check the two boxes and enter 0 and 1 respectively since the
variable to be charted is a proportion.

In the manufacture of aerosol cans height is a critical dimension and is measured at
three locations equally spaced round the can. During a production run a can was
selected every 10 minutes and three height measurements obtained for a sequence of
40 cans. The data are available in Aerosols. MTW.

®

Treat each row of the three columns of heights as a subgroup/sample of three
heights and create Xbar and R charts.

Note that there are many signals on the Xbar chart. However, this is an
incorrect approach. The problem is that the underlying assumption of inde-
pendence is violated. The three heights in each subgroup/sample are from the
same can. Had the samples/subgroups comprised a single height measurement
from each of three different cans then use of Xbar and R charts would have
been valid.
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The correct approach is to use:

¢ an individuals chart of the means of the sets of three height measurements;
¢ a moving range chart for these means;
¢ arange (or standard deviation) chart for the sets of three height measurements.

(ii) Use Calc > Row Statistics. . . to create a column of means for the sets of three
measurements and display the means in individuals and moving range charts.
Scrutiny of these two charts and the earlier R chart reveals no signals of
possible special cause variation. The use of the ranges of the sets of three heights in
(i) gave an estimate of standard deviation that is too small because it only measured
variation within cans. This gave rise to limits on the Xbar chart that were too close
together, hence the signals noted earlier.

(iii) Use Stat > Control Charts > Variables Charts for Subgroups >I-MR-R/S
(Between/Within). . . with subgroups specified across the three height columns
to create the triple chart display of the data and verify that the charts obtained are
the three discussed earlier.

Wheeler and Chambers (1992, pp. 221-226) discuss these under the heading three-
way control charts.

14. Set up the funnel plot data in Table 5.7 in Minitab and create the funnel plot in
Figure 5.29.



